918 research outputs found

    Exact Baryon, Strangeness and Charge Conservation in Hadronic Gas Models

    Get PDF
    Relativistic heavy ion collisions are studied assuming that particles can be described by a hadron gas in thermal and chemical equilibrium. The exact conservation of baryon number, strangeness and charge are explicitly taken into account. For heavy ions the effect arising from the neutron surplus becomes important and leads to a substantial increase in e.g. the π/π+\pi^-/\pi^+ ratio. A method is developed which is very well suited for the study of small systems.Comment: 5 pages, 5 Postscript figure

    First upper limit analysis and results from LIGO science data: stochastic background

    Full text link
    I describe analysis of correlations in the outputs of the three LIGO interferometers from LIGO's first science run, held over 17 days in August and September of 2002, and the resulting upper limit set on a stochastic background of gravitational waves. By searching for cross-correlations between the LIGO detectors in Livingston, LA and Hanford, WA, we are able to set a 90% confidence level upper limit of h_{100}^2 Omega_0 < 23 +/- 4.6.Comment: 7 pages; 1 eps figures; proceeding from 2003 Edoardo Amaldi Meeting on Gravitational Wave

    Do Quarks Obey D-Brane Dynamics?

    Get PDF
    The potential between two D0-branes at rest is calculated to be a linear. Also the potential between two fast decaying D0-branes is found in agreement with phenomenological heavy-quark potentials.Comment: 7 pages, no figures, LaTe

    The Primordial Gravitational Wave Background in String Cosmology

    Get PDF
    We find the spectrum P(w)dw of the gravitational wave background produced in the early universe in string theory. We work in the framework of String Driven Cosmology, whose scale factors are computed with the low-energy effective string equations as well as selfconsistent solutions of General Relativity with a gas of strings as source. The scale factor evolution is described by an early string driven inflationary stage with an instantaneous transition to a radiation dominated stage and successive matter dominated stage. This is an expanding string cosmology always running on positive proper cosmic time. A careful treatment of the scale factor evolution and involved transitions is made. A full prediction on the power spectrum of gravitational waves without any free-parameters is given. We study and show explicitly the effect of the dilaton field, characteristic to this kind of cosmologies. We compute the spectrum for the same evolution description with three differents approachs. Some features of gravitational wave spectra, as peaks and asymptotic behaviours, are found direct consequences of the dilaton involved and not only of the scale factor evolution. A comparative analysis of different treatments, solutions and compatibility with observational bounds or detection perspectives is made.Comment: LaTeX, 50 pages with 2 figures. Uses epsfig and psfra

    Global structure of exact cosmological solutions in the brane world

    Full text link
    We find the explicit coordinate transformation which links two exact cosmological solutions of the brane world which have been recently discovered. This means that both solutions are exactly the same with each other. One of two solutions is described by the motion of a domain wall in the well-known 5-dimensional Schwarzshild-AdS spacetime. Hence, we can easily understand the region covered by the coordinate used by another solution.Comment: Latex, 9 pages including 5 figures; references add, accepted for publication in Physical Review

    Evidence for a black hole in the historical X-ray transient A 1524-61 (=KY TrA)

    Full text link
    We present VLT spectroscopy, high-resolution imaging and time-resolved photometry of KY TrA, the optical counterpart to the X-ray binary A 1524-61. We perform a refined astrometry of the field, yielding improved coordinates for KY TrA and the field star interloper of similar optical brightness that we locate 0.64±0.040.64 \pm 0.04 arcsec SE. From the spectroscopy, we refine the radial velocity semi-amplitude of the donor star to K2=501±52K_2 = 501 \pm 52 km s1^{-1} by employing the correlation between this parameter and the full-width at half-maximum of the Hα\alpha emission line. The rr-band light curve shows an ellipsoidal-like modulation with a likely orbital period of 0.26±0.010.26 \pm 0.01 d (6.24±0.246.24 \pm 0.24 h). These numbers imply a mass function f(M1)=3.2±1.0f(M_1) = 3.2 \pm 1.0 M_\odot. The KY TrA de-reddened quiescent colour (ri)0=0.27±0.08(r-i)_0 = 0.27 \pm 0.08 is consistent with a donor star of spectral type K2 or later, in case of significant accretion disc light contribution to the optical continuum. The colour allows us to place a very conservative upper limit on the companion star mass, M20.94M_2 \leq 0.94 M_\odot, and, in turn, on the binary mass ratio, q=M2/M10.31q = M_2/M_1 \leq 0.31. By exploiting the correlation between the binary inclination and the depth of the Hα\alpha line trough, we establish i=57±13i = 57 \pm 13 deg. All these values lead to a compact object and donor mass of M1=5.82.4+3.0M_1 = 5.8^{+3.0}_{-2.4} M_\odot and M2=0.5±0.3M_2 = 0.5 \pm 0.3 M_\odot, respectively, thus confirming the black hole nature of the accreting object. In addition, we estimate a distance toward the system of 8.0±0.98.0 \pm 0.9 kpc.Comment: 7 pages, 5 figure

    Narrow-band search of continuous gravitational-wave signals from Crab and Vela pulsars in Virgo VSR4 data

    Get PDF
    In this paper we present the results of a coherent narrow-band search for continuous gravitational-wave signals from the Crab and Vela pulsars conducted on Virgo VSR4 data. In order to take into account a possible small mismatch between the gravitational-wave frequency and two times the star rotation frequency, inferred from measurement of the electromagnetic pulse rate, a range of 0.02 Hz around two times the star rotational frequency has been searched for both the pulsars. No evidence for a signal has been found and 95% confidence level upper limits have been computed assuming both that polarization parameters are completely unknown and that they are known with some uncertainty, as derived from x-ray observations of the pulsar wind torii. For Vela the upper limits are comparable to the spin-down limit, computed assuming that all the observed spin-down is due to the emission of gravitational waves. For Crab the upper limits are about a factor of 2 below the spin-down limit, and represent a significant improvement with respect to past analysis. This is the first time the spin-down limit is significantly overcome in a narrow-band search.Fil: Quiroga, Gonzalo Damián. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomia y Física. Sección Física. Grupo de Relatividad y Gravitacion; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; ArgentinaFil: Maglione, Cesar German. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomia y Física. Sección Física. Grupo de Relatividad y Gravitacion; ArgentinaFil: Reula, Oscar Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomia y Física. Sección Física. Grupo de Relatividad y Gravitacion; ArgentinaFil: Aasi, J.. California Institute of Technology; Estados UnidosFil: Abbot, B. P.. California Institute of Technology; Estados UnidosFil: Abbot, R.. California Institute of Technology; Estados UnidosFil: Abbot, T.. State University of Louisiana; Estados UnidosFil: Abernathy, M. R.. California Institute of Technology; Estados UnidosFil: Acernese, F.. Universita di Salerno; Italia. Istituto Nazionale di Fisica Nucleare; ItaliaFil: Ackley, K.. University of Florida; Estados UnidosFil: Adams, C.. LIGO Livingston Observatory; Estados UnidosFil: Adams, T.. Universite de Savoie. Laboratoire d’Annecy-le-Vieux de Physique des Particules; Francia. Cardiff University; Reino UnidoFil: Adams, T.. Universite de Savoie. Laboratoire d’Annecy-le-Vieux de Physique des Particules; FranciaFil: Addesso, P.. University of Sannio at Benevento; ItaliaFil: Adhikar, R. X.. California Institute of Technology; Estados UnidosFil: Adya, V.. Max-Planck-Institut für Gravitationsphysik; AlemaniaFil: Affeldt, C.. Max-Planck-Institut für Gravitationsphysik; AlemaniaFil: Agathos, M.. Nikhef; Science Park; Países BajosFil: Agatsuma, K.. Nikhef; Science Park; Países BajosFil: Aggarwal, N.. Massachusetts Institute of Technology; Estados UnidosFil: Aguiar, O. D.. Centro de Previsao de Tempo e Estudos Climáticos. Instituto Nacional de Pesquisas Espaciais; BrasilFil: Ain, A.. Inter-University Centre for Astronomy and Astrophysics; IndiaFil: Ajith, P.. Tata Institute of Fundamental Research; IndiaFil: Alemic, A.. Syracuse University; Estados UnidosFil: Allen, B.. Max-Planck-Institut für Gravitationsphysik; Alemania. University of Wisconsin; Estados UnidosFil: Allocca, A.. Università degli Studi di Siena; Italia. Istituto Nazionale di Fisica Nucleare; ItaliaFil: Amariutei, D.. University of Florida; Estados UnidosFil: Anderson, S. B.. California Institute of Technology; Estados UnidosFil: Anderson, W. G.. University of Wisconsin; Estados UnidosFil: Arai, K.. California Institute of Technology; Estados Unido

    Long term study of the seismic environment at LIGO

    Full text link
    The LIGO experiment aims to detect and study gravitational waves using ground based laser interferometry. A critical factor to the performance of the interferometers, and a major consideration in the design of possible future upgrades, is isolation of the interferometer optics from seismic noise. We present the results of a detailed program of measurements of the seismic environment surrounding the LIGO interferometers. We describe the experimental configuration used to collect the data, which was acquired over a 613 day period. The measurements focused on the frequency range 0.1-10 Hz, in which the secondary microseismic peak and noise due to human activity in the vicinity of the detectors was found to be particularly critical to interferometer performance. We compare the statistical distribution of the data sets from the two interferometer sites, construct amplitude spectral densities of seismic noise amplitude fluctuations with periods of up to 3 months, and analyze the data for any long term trends in the amplitude of seismic noise in this critical frequency range.Comment: To be published in Classical and Quantum Gravity. 24 pages, 15 figure

    Solutions to the cosmological constant problems

    Get PDF
    We critically review several recent approaches to solving the two cosmological constant problems. The "old" problem is the discrepancy between the observed value of Λ\Lambda and the large values suggested by particle physics models. The second problem is the "time coincidence" between the epoch of galaxy formation tGt_G and the epoch of Λ\Lambda-domination t_\L. It is conceivable that the "old" problem can be resolved by fundamental physics alone, but we argue that in order to explain the "time coincidence" we must account for anthropic selection effects. Our main focus here is on the discrete-Λ\Lambda models in which Λ\Lambda can change through nucleation of branes. We consider the cosmology of this type of models in the context of inflation and discuss the observational constraints on the model parameters. The issue of multiple brane nucleation raised by Feng {\it et. al.} is discussed in some detail. We also review continuous-\L models in which the role of the cosmological constant is played by a slowly varying potential of a scalar field. We find that both continuous and discrete models can in principle solve both cosmological constant problems, although the required values of the parameters do not appear very natural. M-theory-motivated brane models, in which the brane tension is determined by the brane coupling to the four-form field, do not seem to be viable, except perhaps in a very tight corner of the parameter space. Finally, we point out that the time coincidence can also be explained in models where Λ\Lambda is fixed, but the primordial density contrast Q=δρ/ρQ=\delta\rho/\rho is treated as a random variable.Comment: 30 pages, 3 figures, two notes adde
    corecore