773 research outputs found

    First upper limit analysis and results from LIGO science data: stochastic background

    Full text link
    I describe analysis of correlations in the outputs of the three LIGO interferometers from LIGO's first science run, held over 17 days in August and September of 2002, and the resulting upper limit set on a stochastic background of gravitational waves. By searching for cross-correlations between the LIGO detectors in Livingston, LA and Hanford, WA, we are able to set a 90% confidence level upper limit of h_{100}^2 Omega_0 < 23 +/- 4.6.Comment: 7 pages; 1 eps figures; proceeding from 2003 Edoardo Amaldi Meeting on Gravitational Wave

    The Primordial Gravitational Wave Background in String Cosmology

    Get PDF
    We find the spectrum P(w)dw of the gravitational wave background produced in the early universe in string theory. We work in the framework of String Driven Cosmology, whose scale factors are computed with the low-energy effective string equations as well as selfconsistent solutions of General Relativity with a gas of strings as source. The scale factor evolution is described by an early string driven inflationary stage with an instantaneous transition to a radiation dominated stage and successive matter dominated stage. This is an expanding string cosmology always running on positive proper cosmic time. A careful treatment of the scale factor evolution and involved transitions is made. A full prediction on the power spectrum of gravitational waves without any free-parameters is given. We study and show explicitly the effect of the dilaton field, characteristic to this kind of cosmologies. We compute the spectrum for the same evolution description with three differents approachs. Some features of gravitational wave spectra, as peaks and asymptotic behaviours, are found direct consequences of the dilaton involved and not only of the scale factor evolution. A comparative analysis of different treatments, solutions and compatibility with observational bounds or detection perspectives is made.Comment: LaTeX, 50 pages with 2 figures. Uses epsfig and psfra

    Reconstruction of source location in a network of gravitational wave interferometric detectors

    Get PDF
    This paper deals with the reconstruction of the direction of a gravitational wave source using the detection made by a network of interferometric detectors, mainly the LIGO and Virgo detectors. We suppose that an event has been seen in coincidence using a filter applied on the three detector data streams. Using the arrival time (and its associated error) of the gravitational signal in each detector, the direction of the source in the sky is computed using a chi^2 minimization technique. For reasonably large signals (SNR>4.5 in all detectors), the mean angular error between the real location and the reconstructed one is about 1 degree. We also investigate the effect of the network geometry assuming the same angular response for all interferometric detectors. It appears that the reconstruction quality is not uniform over the sky and is degraded when the source approaches the plane defined by the three detectors. Adding at least one other detector to the LIGO-Virgo network reduces the blind regions and in the case of 6 detectors, a precision less than 1 degree on the source direction can be reached for 99% of the sky.Comment: Accepted in Phys. Rev.

    Long term study of the seismic environment at LIGO

    Full text link
    The LIGO experiment aims to detect and study gravitational waves using ground based laser interferometry. A critical factor to the performance of the interferometers, and a major consideration in the design of possible future upgrades, is isolation of the interferometer optics from seismic noise. We present the results of a detailed program of measurements of the seismic environment surrounding the LIGO interferometers. We describe the experimental configuration used to collect the data, which was acquired over a 613 day period. The measurements focused on the frequency range 0.1-10 Hz, in which the secondary microseismic peak and noise due to human activity in the vicinity of the detectors was found to be particularly critical to interferometer performance. We compare the statistical distribution of the data sets from the two interferometer sites, construct amplitude spectral densities of seismic noise amplitude fluctuations with periods of up to 3 months, and analyze the data for any long term trends in the amplitude of seismic noise in this critical frequency range.Comment: To be published in Classical and Quantum Gravity. 24 pages, 15 figure

    Narrow-band search of continuous gravitational-wave signals from Crab and Vela pulsars in Virgo VSR4 data

    Get PDF
    In this paper we present the results of a coherent narrow-band search for continuous gravitational-wave signals from the Crab and Vela pulsars conducted on Virgo VSR4 data. In order to take into account a possible small mismatch between the gravitational-wave frequency and two times the star rotation frequency, inferred from measurement of the electromagnetic pulse rate, a range of 0.02 Hz around two times the star rotational frequency has been searched for both the pulsars. No evidence for a signal has been found and 95% confidence level upper limits have been computed assuming both that polarization parameters are completely unknown and that they are known with some uncertainty, as derived from x-ray observations of the pulsar wind torii. For Vela the upper limits are comparable to the spin-down limit, computed assuming that all the observed spin-down is due to the emission of gravitational waves. For Crab the upper limits are about a factor of 2 below the spin-down limit, and represent a significant improvement with respect to past analysis. This is the first time the spin-down limit is significantly overcome in a narrow-band search.Fil: Quiroga, Gonzalo Damián. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomia y Física. Sección Física. Grupo de Relatividad y Gravitacion; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; ArgentinaFil: Maglione, Cesar German. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomia y Física. Sección Física. Grupo de Relatividad y Gravitacion; ArgentinaFil: Reula, Oscar Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomia y Física. Sección Física. Grupo de Relatividad y Gravitacion; ArgentinaFil: Aasi, J.. California Institute of Technology; Estados UnidosFil: Abbot, B. P.. California Institute of Technology; Estados UnidosFil: Abbot, R.. California Institute of Technology; Estados UnidosFil: Abbot, T.. State University of Louisiana; Estados UnidosFil: Abernathy, M. R.. California Institute of Technology; Estados UnidosFil: Acernese, F.. Universita di Salerno; Italia. Istituto Nazionale di Fisica Nucleare; ItaliaFil: Ackley, K.. University of Florida; Estados UnidosFil: Adams, C.. LIGO Livingston Observatory; Estados UnidosFil: Adams, T.. Universite de Savoie. Laboratoire d’Annecy-le-Vieux de Physique des Particules; Francia. Cardiff University; Reino UnidoFil: Adams, T.. Universite de Savoie. Laboratoire d’Annecy-le-Vieux de Physique des Particules; FranciaFil: Addesso, P.. University of Sannio at Benevento; ItaliaFil: Adhikar, R. X.. California Institute of Technology; Estados UnidosFil: Adya, V.. Max-Planck-Institut für Gravitationsphysik; AlemaniaFil: Affeldt, C.. Max-Planck-Institut für Gravitationsphysik; AlemaniaFil: Agathos, M.. Nikhef; Science Park; Países BajosFil: Agatsuma, K.. Nikhef; Science Park; Países BajosFil: Aggarwal, N.. Massachusetts Institute of Technology; Estados UnidosFil: Aguiar, O. D.. Centro de Previsao de Tempo e Estudos Climáticos. Instituto Nacional de Pesquisas Espaciais; BrasilFil: Ain, A.. Inter-University Centre for Astronomy and Astrophysics; IndiaFil: Ajith, P.. Tata Institute of Fundamental Research; IndiaFil: Alemic, A.. Syracuse University; Estados UnidosFil: Allen, B.. Max-Planck-Institut für Gravitationsphysik; Alemania. University of Wisconsin; Estados UnidosFil: Allocca, A.. Università degli Studi di Siena; Italia. Istituto Nazionale di Fisica Nucleare; ItaliaFil: Amariutei, D.. University of Florida; Estados UnidosFil: Anderson, S. B.. California Institute of Technology; Estados UnidosFil: Anderson, W. G.. University of Wisconsin; Estados UnidosFil: Arai, K.. California Institute of Technology; Estados Unido

    On the relation between effective supersymmetric actions in different dimensions

    Get PDF
    We make two remarks: (i) Renormalization of the effective charge in a 4--dimensional (supersymmetric) gauge theory is determined by the same graphs and is rigidly connected to the renormalization of the metric on the moduli space of the classical vacua of the corresponding reduced quantum mechanical system. Supersymmetry provides constraints for possible modifications of the metric, and this gives us a simple proof of nonrenormalization theorems for the original 4-dimensional theory. (ii) We establish a nontrivial relationship between the effective (0+1)-dimensional and (1+1)-dimensional Lagrangia (the latter represent conventional Kahlerian sigma models).Comment: 15 pages, 2 figure

    Do Quarks Obey D-Brane Dynamics?

    Get PDF
    The potential between two D0-branes at rest is calculated to be a linear. Also the potential between two fast decaying D0-branes is found in agreement with phenomenological heavy-quark potentials.Comment: 7 pages, no figures, LaTe

    Finding Z' bosons coupled preferentially to the third family at CERN LEP and the Fermilab Tevatron

    Get PDF
    Z' bosons that couple preferentially to the third generation fermions can arise in models with extended weak (SU(2)xSU(2)) or hypercharge (U(1)xU(1)) gauge groups. We show that existing limits on quark-lepton compositeness set by the LEP and Tevatron experiments translate into lower bounds of order a few hundred GeV on the masses of these Z' bosons. Resonances of this mass can be directly produced at the Tevatron. Accordingly, we explore in detail the limits that can be set at Run II using the process p pbar -> Z' -> tau tau -> e mu. We also comment on the possibility of using hadronically-decaying taus to improve the limits.Comment: LaTeX2e, 24 pages (including title page), 13 figures; version 2: corrected typographical errors and bad figure placement; version 3: added references and updated introduction; version 4: changes to compensate for old latex version on arXiv server; version 5: additional references, and embedded fonts in eps files for PRD; version 6: corrected some minor typos to address PRD referee's comment

    Global structure of exact cosmological solutions in the brane world

    Full text link
    We find the explicit coordinate transformation which links two exact cosmological solutions of the brane world which have been recently discovered. This means that both solutions are exactly the same with each other. One of two solutions is described by the motion of a domain wall in the well-known 5-dimensional Schwarzshild-AdS spacetime. Hence, we can easily understand the region covered by the coordinate used by another solution.Comment: Latex, 9 pages including 5 figures; references add, accepted for publication in Physical Review
    corecore