54 research outputs found

    Multiple recent horizontal transfers of the cox1 intron in Solanaceae and extended co-conversion of flanking exons

    Get PDF
    Background: The most frequent case of horizontal transfer in plants involves a group I intron in the mitochondrial gene cox1, which has been acquired via some 80 separate plant-to-plant transfer events among 833 diverse angiosperms examined. This homing intron encodes an endonuclease thought to promote the intronÂŽs promiscuous behavior. A promising experimental approach to study endonuclease activity and intron transmission involves somatic cell hybridization, which in plants leads to mitochondrial fusion and genome recombination. However, the cox1 intron has not yet been found in the ideal group for plant somatic genetics - the Solanaceae. We therefore undertook an extensive survey of this family to find members with the intron and to learn more about the evolutionary history of this exceptionally mobile genetic element. Results: Although 409 of the 426 species of Solanaceae examined lack the cox1 intron, it is uniformly present in three phylogenetically disjunct clades. Despite strong overall incongruence of cox1 intron phylogeny with angiosperm phylogeny, two of these clades possess nearly identical intron sequences and are monophyletic in intron phylogeny. These two clades, and possibly the third also, contain a co-conversion tract (CCT) downstream of the intron that is extended relative to all previously recognized CCTs in angiosperm cox1. Re-examination of all published cox1 genes uncovered additional cases of extended co-conversion and identified a rare case of putative intron loss, accompanied by full retention of the CCT. Conclusions: We infer that the cox1 intron was separately and recently acquired by at least three different lineages of Solanaceae. The striking identity of the intron and CCT from two of these lineages suggests that one of these three intron captures may have occurred by a within-family transfer event. This is consistent with previous evidence that horizontal transfer in plants is biased towards phylogenetically local events. The discovery of extended co-conversion suggests that other cox1 conversions may be longer than realized but obscured by the exceptional conservation of plant mitochondrial sequences. Our findings provide further support for the rampant-transfer model of cox1 intron evolution and recommend the Solanaceae as a model system for the experimental analysis of cox1 intron transfer in plants.Fil: SĂĄnchez Puerta, MarĂ­a Virginia. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - Mendoza. Instituto de BiologĂ­a AgrĂ­cola de Mendoza. Universidad Nacional de Cuyo. Facultad de Ciencias Agrarias. Instituto de BiologĂ­a AgrĂ­cola de Mendoza; ArgentinaFil: Abbona, Cinthia Carolina. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - Mendoza. Instituto de BiologĂ­a AgrĂ­cola de Mendoza. Universidad Nacional de Cuyo. Facultad de Ciencias Agrarias. Instituto de BiologĂ­a AgrĂ­cola de Mendoza; ArgentinaFil: Zhuo, Shi. Indiana University; Estados UnidosFil: Tepe, Eric J.. University of Cincinnati; Estados Unidos. University of Utah; Estados UnidosFil: Bohs, Lynn. University of Utah; Estados UnidosFil: Olmstead, Richard G.. University of Washington; Estados UnidosFil: Palmer, Jeffrey D.. Indiana University; Estados Unido

    Dal bilancio sociale 2005 ai progetti per il futuro

    Get PDF
    Il Bilancio sociale Ăš uno strumento adottato dalle amministrazioni pubbliche per rendere note, in modo chiaro e sintetico, le scelte fatte, le azioni realizzate, le risorse impiegate e i risultati ottenuti. Attraverso Il Bilancio sociale l'Ente Parco si prefigge, soprattutto, di fornire i dati sui i caratteri geografici dell'area, presentare la gestione dell'area protetta e acquisire un nuovo modello di rendicontazione che permetta di costruire un quadro completo sulle iniziative e le attivitĂ  svolt

    Inducing mineral precipitation in groundwater by addition of phosphate

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Induced precipitation of phosphate minerals to scavenge trace elements from groundwater is a potential remediation approach for contaminated aquifers. The success of engineered precipitation schemes depends on the particular phases generated, their rates of formation, and their long term stability. The purpose of this study was to examine the precipitation of calcium phosphate minerals under conditions representative of a natural groundwater. Because microorganisms are present in groundwater, and because some proposed schemes for phosphate mineral precipitation rely on stimulation of native microbial populations, we also tested the effect of bacterial cells (initial densities of 10<sup>5 </sup>and 10<sup>7 </sup>mL<sup>-1</sup>) added to the precipitation medium. In addition, we tested the effect of a trace mixture of propionic, isovaleric, formic and butyric acids (total concentration 0.035 mM).</p> <p>Results</p> <p>The general progression of mineral precipitation was similar under all of the study conditions, with initial formation of amorphous calcium phosphate, and transformation to poorly crystalline hydroxylapatite (HAP) within one week. The presence of the bacterial cells appeared to delay precipitation, although by the end of the experiments the overall extent of precipitation was similar for all treatments. The stoichiometry of the final precipitates as well as Rietveld structure refinement using x-ray diffraction data indicated that the presence of organic acids and bacterial cells resulted in an increasing <it>a </it>and decreasing <it>c </it>lattice parameter, with the higher concentration of cells resulting in the greatest distortion. Uptake of Sr into the solids was decreased in the treatments with cells and organic acids, compared to the control.</p> <p>Conclusions</p> <p>Our results suggest that the minerals formed initially during an engineered precipitation application for trace element sequestration may not be the ones that control long-term immobilization of the contaminants. In addition, the presence of bacterial cells appears to be associated with delayed HAP precipitation, changes in the lattice parameters, and reduced incorporation of trace elements as compared to cell-free systems. Schemes to remediate groundwater contaminated with trace metals that are based on enhanced phosphate mineral precipitation may need to account for these phenomena, particularly if the remediation approach relies on enhancement of <it>in situ </it>microbial populations.</p

    Links Between Hydrothermal Environments, Pyrophosphate, Na+, and Early Evolution

    Get PDF
    The discovery that photosynthetic bacterial membrane-bound inorganic pyrophosphatase (PPase) catalyzed light-induced phosphorylation of orthophosphate (Pi) to pyrophosphate (PPi) and the capability of PPi to drive energy requiring dark reactions supported PPi as a possible early alternative to ATP. Like the proton-pumping ATPase, the corresponding membrane-bound PPase also is a H+-pump, and like the Na+-pumping ATPase, it can be a Na+-pump, both in archaeal and bacterial membranes. We suggest that PPi and Na+ transport preceded ATP and H+ transport in association with geochemistry of the Earth at the time of the origin and early evolution of life. Life may have started in connection with early plate tectonic processes coupled to alkaline hydrothermal activity. A hydrothermal environment in which Na+ is abundant exists in sediment-starved subduction zones, like the Mariana forearc in the W Pacific Ocean. It is considered to mimic the Archean Earth. The forearc pore fluids have a pH up to 12.6, a Na+-concentration of 0.7 mol/kg seawater. PPi could have been formed during early subduction of oceanic lithosphere by dehydration of protonated orthophosphates. A key to PPi formation in these geological environments is a low local activity of water
    • 

    corecore