770 research outputs found
Polar Coding for Secret-Key Generation
Practical implementations of secret-key generation are often based on
sequential strategies, which handle reliability and secrecy in two successive
steps, called reconciliation and privacy amplification. In this paper, we
propose an alternative approach based on polar codes that jointly deals with
reliability and secrecy. Specifically, we propose secret-key capacity-achieving
polar coding schemes for the following models: (i) the degraded binary
memoryless source (DBMS) model with rate-unlimited public communication, (ii)
the DBMS model with one-way rate-limited public communication, (iii) the 1-to-m
broadcast model and (iv) the Markov tree model with uniform marginals. For
models (i) and (ii) our coding schemes remain valid for non-degraded sources,
although they may not achieve the secret-key capacity. For models (i), (ii) and
(iii), our schemes rely on pre-shared secret seed of negligible rate; however,
we provide special cases of these models for which no seed is required.
Finally, we show an application of our results to secrecy and privacy for
biometric systems. We thus provide the first examples of low-complexity
secret-key capacity-achieving schemes that are able to handle vector
quantization for model (ii), or multiterminal communication for models (iii)
and (iv).Comment: 26 pages, 9 figures, accepted to IEEE Transactions on Information
Theory; parts of the results were presented at the 2013 IEEE Information
Theory Worksho
On the market value of information commodities. I. The nature of information and information commodities
This article lays the conceptual foundations for the study of the market value of information commodities. The terms âinformationâ and âcommodityâ are given precise definitions in order to characterize âinformation commodity,â and thus to provide a sound basis for examining questions of pricing. Information is used by marketplace actors to make decisions or to control processes. Thus, we define information as the ability of a goalâseeking system to decide or control. By âdecideâ we mean choosing one alternative among several that may be executed in pursuit of a wellâdefined objective. âControlâ means the ordering of actions. Two factors make it possible to turn something into a commodity: (1) appropriability, and (2) valuability. If something cannot be appropriated (i.e., owned), it cannot be traded; moreover, if it cannot be valued, there is no way to determine for what it might be exchanged. We define an information commodity as a commodity whose function it is to enable the user, a goalâseeking system, to obtain information, i.e., to otain the ability to decide or control. Books, databases, computer programs, and advisory services are common examples of information commodities. Their market value derives from their capacity to furnish information
Local Algorithms for Block Models with Side Information
There has been a recent interest in understanding the power of local
algorithms for optimization and inference problems on sparse graphs. Gamarnik
and Sudan (2014) showed that local algorithms are weaker than global algorithms
for finding large independent sets in sparse random regular graphs. Montanari
(2015) showed that local algorithms are suboptimal for finding a community with
high connectivity in the sparse Erd\H{o}s-R\'enyi random graphs. For the
symmetric planted partition problem (also named community detection for the
block models) on sparse graphs, a simple observation is that local algorithms
cannot have non-trivial performance.
In this work we consider the effect of side information on local algorithms
for community detection under the binary symmetric stochastic block model. In
the block model with side information each of the vertices is labeled
or independently and uniformly at random; each pair of vertices is
connected independently with probability if both of them have the same
label or otherwise. The goal is to estimate the underlying vertex
labeling given 1) the graph structure and 2) side information in the form of a
vertex labeling positively correlated with the true one. Assuming that the
ratio between in and out degree is and the average degree , we characterize three different regimes under which a
local algorithm, namely, belief propagation run on the local neighborhoods,
maximizes the expected fraction of vertices labeled correctly. Thus, in
contrast to the case of symmetric block models without side information, we
show that local algorithms can achieve optimal performance for the block model
with side information.Comment: Due to the limitation "The abstract field cannot be longer than 1,920
characters", the abstract here is shorter than that in the PDF fil
Effect of β-glucan and black tea in a functional bread on short chain fatty acid production by the gut microbiota in a gut digestion/fermentation model
β-Glucan and black tea are fermented by the colonic microbiota producing short chain fatty acids (SCFA) and phenolic acids (PA). We hypothesized that the addition of β-glucan, a dietary fiber, and tea polyphenols to a food matrix like bread will also affect starch digestion in the upper gut and thus further influence colonic fermentation and SCFA production. This study investigated SCFA and PA production from locally developed breads: white bread (WB), black tea bread (BT), β-glucan bread (βG), β-glucan plus black tea bread (βGBT). Each bread was incubated in an in vitro system mimicking human digestion and colonic fermentation. Digestion with ι-amylase significantly (p = 0.0001) increased total polyphenol and polyphenolic metabolites from BT bread compared with WB, βG, and βGBT. Total polyphenols in βGBT remained higher (p = 0.016; 1.3-fold) after digestion with pepsin and pancreatin compared with WB. Fermentations containing βG and βGBT produced similar propionate concentrations ranging from 17.5 to 18.6 mmol/L and total SCFA from 46.0 to 48.9 mmol/L compared with control WB (14.0 and 37.4 mmol/L, respectively). This study suggests that combination of black tea with β-glucan in this functional bread did not impact on SCFA production. A higher dose of black tea and β-glucan or in combination with other fibers may be needed to increase SCFA production
Generation of Boundary Manikin Anthropometry
The purpose of this study was to develop 3D digital boundary manikins that are representative of the anthropometry of a unique population. These digital manikins can be used by designers to verify and validate that the components of the spacesuit design satisfy the requirements specified in the Human Systems Integration Requirements (HSIR) document. Currently, the HSIR requires the suit to accommodate the 1st percentile American female to the 99th percentile American male. The manikin anthropometry was derived using two methods: Principal Component Analysis (PCA) and Whole Body Posture Based Analysis (WBPBA). PCA is a statistical method for reducing a multidimensional data set by using eigenvectors and eigenvalues. The goal is to create a reduced data set that encapsulates the majority of the variation in the population. WBPBA is a multivariate analytical approach that was developed by the Anthropometry and Biomechanics Facility (ABF) to identify the extremes of the population for a given body posture. WBPBA is a simulation-based method that finds extremes in a population based on anthropometry and posture whereas PCA is based solely on anthropometry. Both methods yield a list of subjects and their anthropometry from the target population; PCA resulted in 20 female and 22 male subjects anthropometry and WBPBA resulted in 7 subjects' anthropometry representing the extreme subjects in the target population. The subjects anthropometry is then used to 'morph' a baseline digital scan of a person with the same body type to create a 3D digital model that can be used as a tool for designers, the details of which will be discussed in subsequent papers
Pediatric ADHD symptom burden relates to distinct neural activity across executive function domains
Attention-deficit/hyperactivity disorder (ADHD) is a prevalent childhood disorder marked by inattention and/or hyperactivity symptoms. ADHD may also relate to impaired executive function (EF), but is often studied in a single EF task per sample. The current study addresses the question of unique vs. overlapping relations in brain activity across multiple EF tasks and ADHD symptom burden. Three in-scanner tasks drawn from distinct EF domains (cognitive flexibility, working memory, and inhibition) were collected from children with and without an ADHD diagnosis (N = 63). Whole-brain activity and 11 regions of interest were correlated with parent reports of inattention and hyperactivity symptoms. Across the three EF domains, brain activity related to ADHD symptom burden, but the direction and location of these associations differed across tasks. Overall, activity in sensory and default mode network regions related to ADHD, and these relations did not consistently overlap across EF domains. We observed both distinct and overlapping patterns for inattention and hyperactivity symptoms. By studying multiple EF tasks in the same sample, we identified a heterogenous neural profile related to attention symptom burden in children. Our results inform ADHD characterization and treatment and explain some of the variable brain results related to EF and ADHD reported in the literature
Premature Cell Senescence and T Cell ReceptorâIndependent Activation of CD8+ T Cells in Juvenile Idiopathic Arthritis
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/99044/1/art38015.pd
Privacy-Preserving Methods for Sharing Financial Risk Exposures
Unlike other industries in which intellectual property is patentable, the
financial industry relies on trade secrecy to protect its business processes
and methods, which can obscure critical financial risk exposures from
regulators and the public. We develop methods for sharing and aggregating such
risk exposures that protect the privacy of all parties involved and without the
need for a trusted third party. Our approach employs secure multi-party
computation techniques from cryptography in which multiple parties are able to
compute joint functions without revealing their individual inputs. In our
framework, individual financial institutions evaluate a protocol on their
proprietary data which cannot be inverted, leading to secure computations of
real-valued statistics such a concentration indexes, pairwise correlations, and
other single- and multi-point statistics. The proposed protocols are
computationally tractable on realistic sample sizes. Potential financial
applications include: the construction of privacy-preserving real-time indexes
of bank capital and leverage ratios; the monitoring of delegated portfolio
investments; financial audits; and the publication of new indexes of
proprietary trading strategies
Identification of and Molecular Basis for SIRT6 Loss-of-Function Point Mutations in Cancer
SummaryChromatin factors have emerged as the most frequently dysregulated family of proteins in cancer. We have previously identified the histone deacetylase SIRT6 as a key tumor suppressor, yet whether point mutations are selected for in cancer remains unclear. In this manuscript, we characterized naturally occurring patient-derived SIRT6 mutations. Strikingly, all the mutations significantly affected either stability or catalytic activity of SIRT6, indicating that these mutations were selected for in these tumors. Further, the mutant proteins failed to rescue sirt6 knockout (SIRT6 KO) cells, as measured by the levels of histone acetylation at glycolytic genes and their inability to rescue the tumorigenic potential of these cells. Notably, the main activity affected in the mutants was histone deacetylation rather than demyristoylation, pointing to the former as the main tumor-suppressive function for SIRT6. Our results identified cancer-associated point mutations in SIRT6, cementing its function as a tumor suppressor in human cancer
STED microscopy with continuous wave beams
We report stimulated emission depletion (STED) fluorescence microscopy with continuous wave (CW) laser beams. Lateral fluorescence confinement from the scanning focal spot delivered a resolution of 29 - 60 nm in the focal plane, corresponding to a 5 - 8- fold improvement over the diffraction barrier. Axial spot confinement increased the axial resolution by 3.5-fold. We observed three-dimensional (3D) subdiffraction resolution in 3D image stacks. Viable for fluorophores with low triplet yield, the use of CW light sources greatly simplifies the implementation of this concept of far-field fluorescence nanoscopy
- âŚ