41 research outputs found

    Confined step-flow growth of Cu intercalated between graphene and a Ru(0001) surface

    Full text link
    By comparing the growth of Cu thin films on bare and graphene-covered Ru(0001) surfaces, we demonstrate the role of graphene as a surfactant allowing the formation of flat Cu films. Low-energy electron microscopy, X-ray photoemission electron microscopy and X-ray absorption spectroscopy reveal that depositing Cu at 580 K leads to distinct behaviors on both types of surfaces. On bare Ru, a Stranski-Krastanov growth is observed, with first the formation of an atomically flat and monolayer-thick wetting layer, followed by the nucleation of three-dimensional islands. In sharp contrast, when Cu is deposited on a graphene-covered Ru surface under the very same conditions, Cu intercalates below graphene and grows in a step-flow manner: atomically-high growth fronts of intercalated Cu form at the graphene edges, and extend towards the center of the flakes. Our findings suggest potential routes in metal heteroepitaxy for the control of thin film morphology.Comment: 9 pages, 4 figure

    Tuning the N\'eel temperature in an antiferromagnet: the case of NixCo1-xO microstructures

    Full text link
    We show that it is possible to tune the N\'eel temperature of nickel(II)-cobalt(II) oxide films by changing the Ni to Co ratio. We grow single crystalline micrometric triangular islands with tens of nanometers thickness on a Ru(0001) substrate using high temperature oxygen-assisted molecular beam epitaxy. Composition is controlled by adjusting the deposition rates of Co and Ni. The morphology, shape, crystal structure and composition are determined by low-energy electron microscopy and diffraction, and synchrotron-based x-ray absorption spectromicroscopy. The antiferromagnetic order is observed by x-ray magnetic linear dichroism. Antiferromagnetic domains up to micrometer width are observed

    Spontaneous formation of spiral-like patterns with distinct periodic physical properties by confined electrodeposition of Co-In disks

    Get PDF
    Spatio-temporal patterns are ubiquitous in different areas of materials science and biological systems. However, typically the motifs in these types of systems present a random distribution with many possible different structures. Herein, we demonstrate that controlled spatio-temporal patterns, with reproducible spiral-like shapes, can be obtained by electrodeposition of Co-In alloys inside a confined circular geometry (i.e., in disks commensurate with the typical size of the spatio-temporal features). These patterns are mainly of compositional nature, i.e., with virtually no topographic features. Interestingly, the local changes in composition lead to a periodic modulation of the physical (electric, magnetic and mechanical) properties. Namely, the Co-rich areas show higher saturation magnetization and electrical conductivity and are mechanically harder than the In-rich ones. Thus, this work reveals that confined electrodeposition of this binary system constitutes an effective procedure to attain template-free magnetic, electric and mechanical surface patterning with specific and reproducible shapes

    Large spin-mixing conductance in highly Bi-doped Cu thin films

    Get PDF
    Spin Hall effect provides an efficient tool for the conversion of a charge current into a spin current, opening the possibility of producing pure spin currents in non-magnetic materials for the next generation of spintronics devices. In this sense, giant Spin Hall Effect has been recently reported in Cu doped with 0.5 % Bi grown by sputtering and larger values are expected for larger Bi doping, according to first principles calculations. In this work we demonstrate the possibility of doping Cu with up to 10 % of Bi atoms without evidences of Bi surface segregation or cluster formation, as studied by different microscopic and spectroscopic techniques. In addition, YIG/BiCu structures have been grown, showing a spin mixing conductance larger that the one shown by similar Pt/YIG structures. These results reflects the potentiality of these new materials in spintronics devices.Comment: 6 pages, 4 figure

    Imaging the magnetic nanowire cross-section and magnetic ordering within a suspended 3D artificial spin-ice

    Get PDF
    Artificial spin-ice systems are patterned arrays of magnetic nanoislands arranged into frustrated geometries and provide insight into the physics of ordering and emergence. The majority of these systems have been realized in two-dimensions, mainly due to the ease of fabrication, but with recent developments in advanced nanolithography, three-dimensional artificial spin ice (ASI) structures have become possible, providing a new paradigm in their study. Such artificially engineered 3D systems provide new opportunities in realizing tunable ground states, new domain wall topologies, monopole propagation, and advanced device concepts, such as magnetic racetrack memory. Direct imaging of 3DASI structures with magnetic force microscopy has thus far been key to probing the physics of these systems but is limited in both the depth of measurement and resolution, ultimately restricting measurement to the uppermost layers of the system. In this work, a method is developed to fabricate 3DASI lattices over an aperture using two-photon lithography, thermal evaporation, and oxygen plasma exposure, allowing the probe of element-specific structural and magnetic information using soft x-ray microscopy with x-ray magnetic circular dichroism (XMCD) as magnetic contrast. The suspended polymer–permalloy lattices are found to be stable under repeated soft x-ray exposure. Analysis of the x-ray absorption signal allows the complex cross section of the magnetic nanowires to be reconstructed and demonstrates a crescent-shaped geometry. Measurement of the XMCD images after the application of an in-plane field suggests a decrease in magnetic moment on the lattice surface due to oxidation, while a measurable signal is retained on sub-lattices below the surface

    Magneto-Acoustic Waves in antiferromagnetic CuMnAs excited by Surface Acoustic Waves

    Full text link
    Magnetoelastic effects in antiferromagnetic CuMnAs are investigated by applying dynamic strain in the 0.01% range through surface acoustic waves in the GaAs substrate. The magnetic state of the CuMnAs/GaAs is characterized by a multitude of submicron-sized domains which we image by x-ray magnetic linear dichroism combined with photoemission electron microscopy. Within the explored strain range, CuMnAs shows magnetoelastic effects in the form of N\'eel vector waves with micrometer wavelength, which corresponds to an averaged overall spin-axis rotation up to 2.4 deg driven by the time-dependent strain from the surface acoustic wave. Measurements at different temperatures indicate a reduction of the wave amplitude when lowering the temperature. However, no domain wall motion has been detected on the nanosecond timescal
    corecore