731 research outputs found

    Generation of spin currents via Raman scattering

    Full text link
    We show theoretically that stimulated spin flip Raman scattering can be used to inject spin currents in doped semiconductors with spin split bands. A pure spin current, where oppositely oriented spins move in opposite directions, can be injected in zincblende crystals and structures. The calculated spin current should be detectable by pump-probe optical spectroscopy and anomalous Hall effect measurement

    Capture of carriers to screened charged centres and low temperature shallow impurity electric field break down in semiconductors

    Full text link
    Free carrier capture by a screened Coulomb potential in semiconductors are considered. It is established that with decreasing screening radius the capture cross section decreases drastically, and it goes to zero when % r_s=a_B^{*}. On the basis of this result a new mechanism of shallow impurity electric field break down in semiconductors is suggested.Comment: 8 pages, latex, 1 figure in gif format, to be submitted to "Journal of Condensed Matter

    Correlation effects in sequential energy branching: an exact model of the Fano statistics

    Full text link
    Correlation effects in in the fluctuation of the number of particles in the process of energy branching by sequential impact ionizations are studied using an exactly soluble model of random parking on a line. The Fano factor F calculated in an uncorrelated final-state "shot-glass" model does not give an accurate answer even with the exact gap-distribution statistics. Allowing for the nearest-neighbor correlation effects gives a correction to F that brings F very close to its exact value. We discuss the implications of our results for energy resolution of semiconductor gamma detectors, where the value of F is of the essence. We argue that F is controlled by correlations in the cascade energy branching process and hence the widely used final-state model estimates are not reliable -- especially in the practically relevant cases when the energy branching is terminated by competition between impact ionization and phonon emission.Comment: 11 pages, 4 figures. Submitted to Physical Review

    Frustrated square lattice with spatial anisotropy: crystal structure and magnetic properties of PbZnVO(PO4)2

    Full text link
    Crystal structure and magnetic properties of the layered vanadium phosphate PbZnVO(PO4)2 are studied using x-ray powder diffraction, magnetization and specific heat measurements, as well as band structure calculations. The compound resembles AA'VO(PO4)2 vanadium phosphates and fits to the extended frustrated square lattice model with the couplings J(1), J(1)' between nearest-neighbors and J(2), J(2)' between next-nearest-neighbors. The temperature dependence of the magnetization yields estimates of averaged nearest-neighbor and next-nearest-neighbor couplings, J(1) ~ -5.2 K and J(2) ~ 10.0 K, respectively. The effective frustration ratio alpha=J(2)/J(1) amounts to -1.9 and suggests columnar antiferromagnetic ordering in PbZnVO(PO4)2. Specific heat data support the estimates of J(1) and J(2) and indicate a likely magnetic ordering transition at 3.9 K. However, the averaged couplings underestimate the saturation field, thus pointing to the spatial anisotropy of the nearest-neighbor interactions. Band structure calculations confirm the identification of ferromagnetic J(1), J(1)' and antiferromagnetic J(2), J(2)' in PbZnVO(PO4)2 and yield J(1)'-J(1) ~ 1.1 K in excellent agreement with the experimental value of 1.1 K, deduced from the difference between the expected and experimentally measured saturation fields. Based on the comparison of layered vanadium phosphates with different metal cations, we show that a moderate spatial anisotropy of the frustrated square lattice has minor influence on the thermodynamic properties of the model. We discuss relevant geometrical parameters, controlling the exchange interactions in these compounds, and propose a new route towards strongly frustrated square lattice materials.Comment: 14 pages, 9 figures, 5 table

    Interplay of atomic displacements in the quantum magnet (CuCl)LaNb2O7

    Full text link
    We report on the crystal structure of the quantum magnet (CuCl)LaNb2O7 that was controversially described with respect to its structural organization and magnetic behavior. Using high-resolution synchrotron powder x-ray diffraction, electron diffraction, transmission electron microscopy, and band structure calculations, we solve the room-temperature structure of this compound [alpha-(CuCl)LaNb2O7] and find two high-temperature polymorphs. The gamma-(CuCl)LaNb2O7 phase, stable above 640K, is tetragonal with a(sub) = 3.889 A, c(sub) = 11.738 A, and the space group P4/mmm. In the gamma-(CuCl)LaNb2O7 structure, the Cu and Cl atoms are randomly displaced from the special positions along the {100} directions. The beta-phase [a(sub) x 2a(sub) x c(sub), space group Pbmm] and the alpha-phase [2a(sub) x 2a(sub) x c(sub), space group Pbam] are stable between 640 K and 500 K and below 500 K, respectively. The structural changes at 500 K and 640 K are identified as order-disorder phase transitions. The displacement of the Cl atoms is frozen upon the gamma --> beta transformation, while a cooperative tilting of the NbO6 octahedra in the alpha-phase further eliminates the disorder of the Cu atoms. The low-temperature alpha-(CuCl)LaNb2O7 structure thus combines the two types of the atomic displacements that interfere due to the bonding between the Cu atoms and the apical oxygens of the NbO6 octahedra. The precise structural information resolves the controversy between the previous computation-based models and provides the long-sought input for understanding the magnetic properties of (CuCl)LaNb2O7.Comment: 12 pages, 10 figures, 5 tables; crystallographic information (cif files) include

    Podzol development on different aged coastal bars of Lake Ladoga

    Get PDF
    This paper presents the result of the studies of soil formation on different aged coastal bars in the transgression zone of Lake Ladoga in the Nizhnesvirsky Nature Reserve (Leningrad region, North-West of the Russian Federation). The investigation presents the data on soil chronoseries, located on four Ladoga coastal bars of different ages from 70±25 to 1590±25 years BP. We estimated the trends of accumulation and transformation of organic matter, elemental composition of humic acids (HAs), development of plant communities and the influence of soil formation factors on the formation rate of soil horizons. We assessed the degree of soil organic matter stabilization using modern instrumental methods (spectroscopy of nuclear magnetic resonance CP/MAS 13C-NMR). An integral indicator of the hydrophobicity of HAs, which represents the total fraction of unoxidized carbon atoms, is proposed. The Ladoga Holocene transgression is one of the most informative and applicable models for pedogenesis; successional processes occurring in young and mature areas can be traced here. We identified local processes of soil formation such as podzolization, gleyfication, peat formation and humus accumulation. Physical, physical-chemical and biological soil properties with a detailed description of the morphology of soil of different aged coastal bars are presented

    Dynamic avalanche breakdown of a p-n junction: deterministic triggering of a plane streamer front

    Full text link
    We discuss the dynamic impact ionization breakdown of high voltage p-n junction which occurs when the electric field is increased above the threshold of avalanche impact ionization on a time scale smaller than the inverse thermogeneration rate. The avalanche-to-streamer transition characterized by generation of dense electron-hole plasma capable to screen the applied external electric field occurs in such regimes. We argue that the experimentally observed deterministic triggering of the plane streamer front at the electric field strength above the threshold of avalanche impact ionization but yet below the threshold of band-to-band tunneling is generally caused by field-enhanced ionization of deep-level centers. We suggest that the process-induced sulfur centers and native defects such as EL2, HB2, HB5 centers initiate the front in Si and GaAs structures, respectively. In deep-level free structures the plane streamer front is triggered by Zener band-to-band tunneling.Comment: 4 pages, 2 figure

    Physical properties as a key factor in the soil functioning in Chernevaya Taiga (Western Siberia)

    Get PDF
    On the barrier-rain slopes of the low mountains of Western Siberia, there are tall-grass forests dominated by fir and aspen. Their regional name is Chernevaya taiga (from the word "chernyj" – black). Chernevaya taiga is a unique representative of the highly productive and fertile ecosystems of Western Siberia. The key features of the development of these ecosystems in the mountains of Southern Siberia are still poorly investigated. The soil physical properties play a crucial role in forming the functioning of the Chernevaya taiga ecosystem. The thermal regime, particle size distribution (profile differentiation and texture class) and hydrophysical constants of soils in Chernevaya taiga are studied. It is shown that the soil profiles of Chernevaya taiga are differentiated by the content of fine particles, which indicates the development of eluvial-illuvial hydrological and biogeochemical regimes. The favourable thermic regime is caused by a thick layer of snow existence during the winter period, when the soils of Chernevaya taiga are not frozen during the winter period. This is one of the key factors of high productivity of this ecosystem. Soils of Chernevaya taiga are characterized by increased values of key hydrological constants in comparison with sandy textured soils of oligotrophic environments

    Molecular and elemental composition of humic acids isolated from selected soils of the Russian Arctic

    Get PDF
    Humic substances, isolated from selected soils of the Russian Arctic, were ,+investigated in terms of molecular composition and stabilization rate. The degree of polar soil organic matter stabilization was assessed with the use of modern instrumental spectroscopy methods. The analysis of humic acid (HAs) preparations showed that aliphatic fragments prevail in the organic matter isolated in polar soils. The predominance of aliphatic fragments was revealed in HAs from soils located in the coastal zone, which could be caused by regular refreshment of organic matter during sin-lithogenic process and processes of hydrogenation in HAs. Breaking of the C-C bonds and formation of chains with a high hydrogen content, which leads to the formation of aliphatic fragments in HAs, were noted. Data on the calculated atomic ratios of the elements in HAs are given and graphs show the main regularities in the formation of HAs and their properties. The integrated indicators of the molecular composition of humic acids of soils of the Russian Arctic are presented. The paper contains 4 Tables, 4 Figures and 44 References

    Soil formation in technogenic landscapes: trends, results, and representation in the current classifications (Review)

    Get PDF
    For hundreds of years, humans have been a soil formation factor. With the recent industrial development of vast territories, the formation of soils in technogenic and postanthropogenic conditions requires more attention. This study reviews the literature on the soils of human-transformed or human-made landscapes (technogenic landscapes),in which soil formation starts on a new technogenic substrate. Such soils may occur in different bioclimatic conditions. We focused on processes that govern soil morphology and the subsequent transformation of these soils. Often, the soils of technogenic landscapes are characterized by high bulk density values and by the presence of dense contact. Their properties are affected mainly by organic matter accumulation (humus, litter, and peat). The paper also covers approaches to the reclamation of technogenic landscapes, the main stages, and partly the reclamation options. It is noted that the efficiency of reclamation activities depends on the available resources and timely decision-making. We assessed the efficiency of soil reclamation methods and suggested technogenic landscape survey techniques. The major approaches to soil classification in technogenic landscapes in national and international soil classification systems are briefly discussed, and an approximate correlation of soil names used in different systems is suggested. All considered classifications provide the opportunity to assess the soil properties and specifics of soil formation in technogenic landscapes. However, in most studies, the soil diagnostics are limited to top-order taxa only
    corecore