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For hundreds of years, humans have been a soil formation factor. With the recent 

industrial development of vast territories, the formation of soils in technogenic and post-
anthropogenic conditions requires more attention. This study reviews the literature on 
the soils of human-transformed or human-made landscapes (technogenic landscapes), 
in which soil formation starts on a new technogenic substrate. Such soils may occur in 
different bioclimatic conditions. We focused on processes that govern soil morphology 
and the subsequent transformation of these soils. Often, the soils of technogenic 
landscapes are characterized by high bulk density values and by the presence of dense 
contact. Their properties are affected mainly by organic matter accumulation (humus, 
litter, and peat). The paper also covers approaches to the reclamation of technogenic 
landscapes, the main stages, and partly the reclamation options. It is noted that the 
efficiency of reclamation activities depends on the available resources and timely 
decision-making. We assessed the efficiency of soil reclamation methods and suggested 
technogenic landscape survey techniques. The major approaches to soil classification 
in technogenic landscapes in national and international soil classification systems 
are briefly discussed, and an approximate correlation of soil names used in different 
systems is suggested. All considered classifications provide the opportunity to assess 
the soil properties and specifics of soil formation in technogenic landscapes. However, 
in most studies, the soil diagnostics are limited to top-order taxa only.
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Introduction

The development of the post-industrial economy does not reduce industrial 
output or the rate of mineral extraction. On the contrary, the manufacturing 
productivity increase is accompanied by the transformation of large natural 
landscapes into technogenic barrens (technogenic landscapes). The formation and 
structure of technogenic landscapes are governed by human engineering activities 
to extract and process minerals [1]. Engineering soil transformation has the most 
significant impact on soils compared to agricultural and urban cases [2] because 
it leads to a drastic transformation not only of soils themselves but also of all soil 
formation factors. Soil formation in technogenic landscapes is accompanied by 
biocenotic succession [3], as well as changes in microclimate, initial substrate 
properties, and terrain features [4]. As opposed to human-transformed (disturbed) 
soils, where the natural processes are just corrected, soil-forming processes in 
technogenic landscapes utilize the “new” substrate [5].

Although some countries faced disturbed area problems as early as the 19th 
century, technogenic landscapes have become an object of soil research relatively 
recently. It was facilitated, firstly, by a significant increase in environmental footprint 
in the second half of the 20th century, and secondly by gaining experience in soil 
reclamation [6]. Until recently, the research on industrially disturbed territories has 
covered, mainly, the countries of Europe, the former USSR, and North America. 
By the beginning of the 1970s, technogenic landscapes were studied in the USA 
[7, 8], the DDR [9], Great Britain [10], Germany [11], Czechoslovakia [12], and 
Poland [13]. In Russia, as reported by the Public Committee for Safe Industrial 
and Mining Practices, by 1965, the reclaimed area exceeded 60.000 hectares [14]. 
In recent decades, a sharp increase in mineral deposit extraction has occurred in 
developing countries, so the geography of research has expanded significantly to 
cover China [15–17], India [18–20], South America [21–23], and Africa [24, 25].

The ever-increasing interest in technogenic landscapes is also related to 
their significant impact on adjacent areas. Thus, the risk of extreme flooding 
is higher in areas of intense mining [26–28]. Technogenic landscapes are also 
subjected to erosion and solifluction processes [21, 29]. Drain water ingress into 
migration flows affects ground and surface waters [30–32]. Artifacts containing 
carbonaceous material are prone to spontaneous combustion [33], which reduces 
the air quality [34].

Technogenic landscapes have not only negative but also some positive effects. 
In some cases, the fertility of mining waste is higher than that of natural soils [35]. 
There are cases when soils suitable for plant growth are produced from mining waste. 
Such waste is prepared by grinding stony fractions, adding active organic matter, 
and, sometimes, pH neutralization [36]. In the soils of technogenic landscapes, a 
particular field of study is their carbon sequestration capacity [37–39].

Regardless of the type of activity that produced technogenic landscapes and 
soils, there are always geochemically (and sometimes geomorphologically) 
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unstable formations. The forces driving the balancing of their surface properties 
with environmental factors are not only the soil formation drivers but may be 
caused by pedogenesis. For this reason, the studies of the soils of technogenic 
landscapes are of great interest.

This review analyzes the existing global approaches to soil formation in 
technogenic landscapes, their reclamation, and their placement in the soil 
classification system. We consider the soils created through self-remediation or 
by reclamation of mining waste dumps, mineral processing waste, construction 
waste, and marine sediments deposited onshore during dredging operations. We 
paid particular attention to coal mine dump soils, as coal mining is the leading 
industry that expands technogenic landscapes. In addition, coal is mined on all 
continents except for Antarctica and in every climatic zone.

Characteristic features of soil formation in technogenic landscapes

Physical properties of parent materials. Compaction and decompaction. As 
technogenic landscapes are formed, significant volumes of various substrates are 
extracted or moved by heavy machinery. As a result, soil formation usually occurs 
on over-compacted substrates. Even when the process does not include surface 
leveling or the use of heavy equipment (for example, in water development 
projects), the soil density of technogenic landscapes is still higher than the density 
of natural soils in the adjacent areas [40]. While the density of the technogenic 
landscape soils composed of sandy, loamy and clayey substrates (loose rocks) is in 
the range of 1.1-1.8 g/cm3, it can reach 2.5 g/cm3 for stony surfaces. In both cases, 
as soils are formed, the density does not remain constant and changes through two 
alternating and opposite compaction and decompaction processes [41].

Technogenic soils compaction often continues even after a human activity 
is completed. For instance, stony soils continue to be compacted regardless of 
the climatic conditions through packing (shrinkage) of the soil-forming substrate 
(Table 1). Extra soil compaction occurs when the soils are used for agriculture 
[42], and, subsequently, as polyculture is replaced by monoculture [43]. The high 
density of loose soils in technogenic landscapes leads to low water permeability. 
Therefore, the soil formation on the surface of drill cuttings in a humid climate 
is hydromorphic [44], which is also detected in moderately humid areas covered 
by a fertile soil layer [45]. Reducing processes identified by increased methane 
emission [46] or formation of ferromanganese nodules [47] are detected in the 
soils formed on stony substrates.

Decompaction occurs as a result of root system development initiating the soil 
structure formation [15]. Because loamy soils contain more material suitable for 
structure formation than stony soils, their deconsolidation is faster.

Spatial and vertical heterogeneity. Heterogeneity is typical of the soils of 
technogenic landscapes. Spatial heterogeneity (Fig. 1) is found at sites where 
the surface is composed of various substrates [17, 48]. A pronounced profile 
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heterogeneity is formed during reclamation, as rocks are laid layer-by-layer. It is 
also produced as young soil mature. In a humid climate, the textural differentiation 
of the profile of the technogenic landscape soils is caused by eluvial and illuvial 
processes [49]. In technogenic formations composed of stony rocks, the soil 
profile differentiation is due to physical, biophysical, chemical, and biochemical 
disintegration [50]. It is noted that the intensity of disintegration of coarse rock 
fragments is higher in arid areas, while for gravel and sand, it is higher in areas 
with optimal moisture content [51].

Fig. 1. Scheme of the formation of technogenic landscape 
spatial heterogeneity in surface mining

Organic matter accumulation. Soil profile differentiation by organic matter 
content is a distinctive feature of most technogenic landscapes. Organic matter 
can be both inherited from soil-forming rocks (lithogenic), e.g., in the soils of coal 
mine dump, or generated by soil and biological processes. As many authors note 
(Table 1), the soils of technogenic landscapes, regardless of the rock composition 
and climatic conditions, feature intense organic matter accumulation rates 
exceeding those in natural soils. In the areas where organic matter accumulation 
occurs in zonal soils, organic carbon in technogenic landscapes is fixed by humus 
accumulation.

High organic matter accumulation rates are also found in the soils with soil-
forming rocks enriched with lithogenic organic matter [61]. The accumulation 
of humus increases from stony to sandy [58] and further to loamy rocks [82]. In 
areas where the formation of thick humus horizons is not a feature of the zonal soil 
formation, the intensity and peculiarities of organic matter stabilization processes 
in the soils of technogenic landscapes are determined by the lithological properties 
of the substrates [83]. In the soils enriched with fine fractions (< 0.01 mm), high 
organic matter accumulation rates can also be found in subtropical and tropical 
climates [19, 64]. In such areas, they are also found on stony substrates capable of 
producing fine particles upon weathering [20, 23].

It should be noted that humus accumulation is not the only process of organic 
carbon accumulation in the soils. 
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For example, in soils on calcareous rocks within technogenic landscapes, 
the abundance of soil microorganisms contributes to a higher rate of particular 
organic matter accumulation compared to mineral-bonded organic matter. This 
effect increases with the soil heat [65]. When the activity of plant organic matter 
destructors is suppressed for various reasons, plant litter is accumulated on the 
surface of technogenic landscapes [66, 69]. During the formation of herbaceous 
ecosystems, the predominance of litter accumulation over humus accumulation is 
observed in the first stages of vegetation development [67]. In forest ecosystems 
of boreal and sub-boreal climates, litter accumulation often replaces humus 
accumulation [68]. Specific organic matter stabilization processes in the soils 
within technogenic landscapes include carbonizing plant residues in highly acidic 
rocks [70] and their mummification during the soil formation in arid areas [47, 54].

Organic matter oxidation. In technogenic landscapes where humus substrates 
form the surface, organic matter dehumification occurs. The upper layers of natural 
soils stored for subsequent use in reclamation are subjected to mineralization to a 
greater extent [25, 40]. The reason for this is that the bulk humus layer in the soil 
profile being formed is slowly involved in metabolic processes. In 30-year-old 
soils from Siberian coal mine dumps, the biologically active layer thickness does 
not exceed 10 cm. The microbial biomass and basal respiration values only come 
close to the background value in the topmost 5-cm thick layer [84].

Another manifestation of organic matter mineralization in the soils of coal 
mine dumps is combustion occurring as spontaneous combustion of the dumps. 
Combustion is not a soil process. Nevertheless, it affects both the soil-forming rock 
composition [75] and the properties of the soils at the adjacent sites [41]. A less 
intensive process of lithogenic organic matter oxidation is called decoalification 
[85]. Along with mineralization [74], decoalification involves coal carbon in the 
formation of humus systems and soil microbial communities [72, 73]. It is noted 
that the carbon balance in the soils of technogenic landscapes remains positive 
after the decomposition of lignite. 60% of the CO2 released from such soils is 
provided by the degradation of carbonates [86].

Acidification and gypsification. The acidity of the technogenic landscape 
soils is also associated with oxidation processes (Table 1) Minimal pH values are 
characteristic of soils formed on sulfide-containing wastes of ferrous and non-
ferrous metallurgy and coal mining. Oxidation of sulfides at such sites leads to the 
termination of plant communities [87]. In humid areas, this process initiates acid 
drainage, which increases heavy metal mobility [88]. When the soils are formed on 
carbonate rocks, exposure to acid solutions leads to leaching or decarbonatization 
[81]. The latter is often accompanied by gypsum formation: gypsification of the 
entire soil profile or the upper part [29, 80].

Soil properties and environmental conditions. The soil formation in 
technogenic landscapes does not always follow the trend of pedogenesis typical 
of zonal soils in natural conditions. The primary reason for this is the soil-forming 
substrate properties. The trends of local natural and technogenic pedogenesis 

Denis A. Sokolov, Vladimir A. Androkhanov, Evgeny V. Abakumov



13

coincide only where the properties of technogenic substrates are close to those 
of soil-forming rocks in undisturbed soils. This is most evident in a moderate 
continental climate, where humus accumulation is the leading process of soil 
formation on both dumps of loamy rocks and natural loamy soils. Besides, this is 
a primary process for the soils in hotter and more humid regions but only on rocks 
with a high lithogenic humus accumulation potential. Such rocks contain or can 
produce a sufficient amount of fine mineral material [89, 90].

The evolution of eluvial and illuvial processes leading to texture-differentiated 
soils is typical of humid climate areas. Illuvial processes are primarily found 
in stony substrates, especially consisting of rocks less resistant to weathering. 
However, the high density of technogenic substrates and their shrinkage can 
minimize the manifestation of any soil processes.

Another important feature is that the surfaces of most technogenic landscapes 
are differentiated in their relief, density, composition, and some other soil-
forming rock properties. Under such conditions, the evolution of soils and topsoil 
is diversified [41], while the divergence of soil geochemical processes in time and 
space contributes to further isolation of evolutionary trends [91].

Reclamation of technogenic landscapes

On the practical side, the soil formation in technogenic landscapes is a 
transformation of the substrate properties to make them “useful” and facilitate 
further use of the technogenic landscapes. “Useful” functions are selected 
and adjusted while reclamation is in progress. Conventionally, reclamation is 
understood as restoring soil fertility to a degree suitable for agriculture and forestry 
[11]. Recently, the concept of reclamation has been somewhat changed, mainly 
due to expanding its goals and objectives. Today’s reclamation is the formation of 
a sustainable neo-landscape that meets the soil-ecological state specifications and 
has the soil functions defined at the design stage [92]. Such a definition suggests 
that the result of reclamation is creating sustainable soil cover, contributing to the 
reproduction of the key ecosystem components with a certain level of fertility 
[41]. In practical terms, results of the soil formation in technogenic landscapes 
should be considered through the soil-ecological efficiency of reclamation [4]. 
Let us explain that by soil-ecological efficiency of reclamation, we mean the 
ability of the soils of technogenic landscapes to perform the functions inherent for 
natural undisturbed (zonal) soils in the same area.

Modern approaches to reclamation involve four main stages (Fig. 2). At 
the first planning stage, we define reclamation goals and objectives and assess 
the required and available resources for implementing methods and options of 
reclamation [17, 57, 93].

At the engineering stage, the relief and surface layers of a technogenic 
landscape are formed, including horizontal surface arrangement and slope 
reduction. Boulder rocks resistant to supergene transformation are often used to 
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stabilize the slopes mechanically and ensure geomorphological stability. When 
building flat and slightly sloping areas, it is better to cover the surface with 
potentially fertile substrates (PFS) suitable for soil formation. One example case 
is the disturbed areas of Mangyshlak and the foothills of the Tien Shan within 
Kazakhstan. It shows that substrates already transformed by soil formation are 
more susceptible to soil processes [94]. In a moderate climate, humus material of 
fertile soil layers (FSL), pre-stored before mineral deposit development, is used 
for surface backfill [38, 43, 48, 95]. Where FSL resources are in low supply, the 
fertile layer can be mixed with other rocks (usually loamy). It was established that 
the acceptable mix ratio is 50%. With 75% loam content, the ability of the soil to 
self-repair is sharply reduced. Adding more rocks to FSL decreases the resistance 
of the reclaimed soil to stress [96]. Some reclamation guidelines suggest backfill 
with FSL not immediately after the dump formation, but 4-5 years after; the soil 
will settle down and be inhabited by plant communities [97].

 

Fig. 2. Reclamation activities flowchart

When the neo-landscape body is composed of phytotoxic substrates, chemical 
reclamation is used at the engineering stage [56]. Chemical ameliorants make the 
root zone suitable for plant growing [64, 87, 98, 99]. They also reduce the mobility 
of pollutants [77]. Chemical reclamation is also used for soil improvement. The 
use of mineral fertilizers [46], ash [76], some organic [19, 100], and municipal 
solid waste [78] are widespread. Recently, particular attention has been paid to the 
use of coal produced by incomplete combustion of wood [18, 25], animal bones 
[101], or fossil coal [102] in reclamation. It was found that in climatic conditions 
unfavorable for humus accumulation, pyrocarbons promote the fixation of carbon 
and other nutrients in soils [103]. The presence of lignite particles in the soil 
facilitates herbaceous vegetation growth and mortmass accumulation [104].
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The key objective of  the biological stage is forming a layer of soil and vegetation 
over the surface of a technogenic landscape. The layer properties should meet the 
goals of reclamation. Note that some goals do not require the biological stage 
at all. For example, there is reclamation for construction when structures and 
industrial sites are built within a technogenic landscape. Reclamation for fishery 
provides the lowest soil-ecological efficiency. It is often limited to slope flattening 
and creating shallow ponds for subsequent fish farming [16]. Overgrowing of 
technogenic landscapes can be considered as a particular case of reclamation. 
This option also excludes the biological stage. Surrounding ecosystems, which 
usually have a substantial biological capacity, promote vegetation growth on the 
soil-forming substrate [59]. For coal mine dumps, the soil-ecological efficiency of 
overgrowth is often higher than conventional forestry and agricultural reclamation 
technologies [22, 105].

The post-engineering stage. With the proximity to large settlements, a wide 
variety of rock compositions, and landforms (some of them are unsuitable for any 
further use), in some cases, technogenic landscapes are promising for recreational 
(tourist) reclamation. For example, dumps are “technogenic mountains”, so 
they are attractive for residents of plain territories. The reason for technogenic 
landscape attractiveness is their specific macro- and mesorelief and the presence 
of various rocks and vegetation areas that may form a wide range of forest, 
meadow, and rupicolous ecosystems. The soil-ecological efficiency of this option 
depends on the properties of stored substrates and the intensity of the subsequent 
use of an area [93].

Reclamation of a technogenic landscape for water protection aims to maintain 
the sustainable functioning of water bodies, both natural and created through 
industrial activities. This option rarely covers the entire technogenic landscape. 
Usually, it applies to the areas adjacent to water bodies. It was established that 
under a humid climate, the storm runoff coefficient at unreclaimed sites is 
2–3 times higher than at reclaimed ones [26]. Such results are possible when 
multilayered perennial plantings on suitable soils are created on the surface of a 
technogenic landscape.

Forestry reclamation is widespread in humid and subhumid areas. The 
high efficiency of this option largely depends on the eluvial processes in soils. 
However, because of the high substrate density, the survival rate of seedlings 
is low [53]. Moreover, some cereal plants may hamper the growth of woody 
plants [21]. Dissected topography minimizes these factors and increases the soil-
ecological efficiency of forestry reclamation [55, 106]. It is also noted that areas 
covered with deciduous forests show faster litter transformation than coniferous 
forests [63]. In this way, the microbiocenosis similar to that in natural soils is 
formed [66]. The use of sea buckthorn (Hippophae rhamnoides L.) in reclamation 
contributes to nitrogen accumulation in the soils [107]. In some cases, the rates 
of soil nitrogen accumulation in sea-buckthorn plantations exceed those in areas 
with leguminous grasses [15].
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Agricultural reclamation has the highest soil and ecological efficiency. The 
primary reason is that this reclamation option aims to form highly fertile soils. It 
is achieved through surface leveling, application of fertile substrates [38, 109], 
fertilizing [42], sowing crops [21], and maintaining the required fertility in the 
root layer [43, 71]. For this reason, agricultural reclamation is only appropriate for 
large areas [57]. Nevertheless, many references have described the use of crops in 
reclamation without radical soil improvement [20, 56, 78].

The review of research on reclamation has enabled us to identify some 
measures to increase the soil cover remediation efficiency (Fig. 3). First of all, we 
should assess the climatic conditions of the technogenic landscape location: the 
amount of precipitation, biologically active temperatures, evaporation rate, and 
other metrics. Then, the natural soils of adjacent areas should be studied to assess 
the zonal soil formation trends and identify the accompanying soil processes. The 
next step is to evaluate the quantity and quality of available FSL and PFS and 
classify technogenic substrates by their degree of suitability for soil formation. 
The reclamation options can be selected both for the entire technogenic landscape 
or specifically for its sections. Further, the substrates to be deposited on the surface 
and relief formation methods should be selected. Having evaluated all the above-
listed conditions, we should select plant species for biological reclamation. At this 
step, it is important to take into account the ecological flexibility of plant species. 

Fig. 3. The steps of technogenic landscape survey and recommendation development

The soil-ecological efficiency depends on the availability of resources and 
their use in due time. Obviously, all reclamation conditions and resources should 
be evaluated at the planning stage for maximum efficiency. A shortage of such 
resources as FSL and PFS at the engineering stage can significantly reduce the 
reclamation efficiency. At the biological stage, there are few chances to change the 
reclamation activities. Therefore, under a shortage of FSL and PFS, the artificial 
substrates should spatially and vertically alternate reasonably, and diverse relief 
formation methods should be used. It will contribute to a) the efficient use of 
the reclamation resources; b) the avoidance of “exotic” combinations of the 
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soil-forming rock properties, climatic conditions, and plant species used at the 
biological stage; c) the increased biological diversity of a technogenic landscape.

Classification of soils in technogenic landscapes

Soil classifications in technogenic landscapes are just over two decades old, 
so they are based on the modern concepts of soil genesis. Before that, there was 
a long period of assessing the technogenic substrate suitability for growing crops 
and trees, or, conversely, selecting plants for industrial site greenspace expansion 
[109]. The result of the long efforts is the categorization of technogenic substrates 
into several classes by their potential fertility and phytotoxicity [11, 98, 110, 111]. 
Other research that was conducted before the creation of soil classifications for 
technogenic landscapes was technogenic landform grouping. Such grouping and 
rock classification can be found in several regulatory documents [112, 113]. In 
this paper, we will not dwell on these approaches. We only note that they served 
as the foundation for the classifications of the technogenic landscape soils.

Along with categorization according to the characteristics of substrate and 
relief features, it has been proposed to categorize technogenic landscapes by the 
degree of soil features preservation [114] and the structure of the newly formed 
soil profile [115]. The need to assess the diversity of phytocenosis formation 
conditions in disturbed areas has facilitated the development of landscape feature 
classifications. Taranov et al. [116] showed that various combinations of soil 
formation conditions within a single technogenic landscape could produce forest, 
sod-steppe, meadow, or bog evolution of young soils. Such a differentiation 
of conditions has become a foundation for classifying the soils of technogenic 
landscapes proposed by Eterevskoy et al. [117]. Besides the above attributes, 
the advantage of the proposed classification compared to the rock classifications 
widespread at that time is the use of soil properties that reflect elementary soil 
processes and the thickness of genetic horizons.

Nevertheless, these approaches were not further developed since, at that time, 
the surface substrates in disturbed areas were not considered to be soil or soil-like. 
The key reason for this attitude is the considerable predominance of rock features 
in the soils of technogenic landscapes and the weak development of classical soil 
horizons. However, despite the initial heterogeneity of technogenic substrates, 
most of them perform soil functions to provide living organisms with nutrition 
and moisture. In addition, the soils formed on such substrates eventually acquire 
features of zonal soils [118]. We consider that the listing of the Technosol into 
the World Reference Base for Soil Resources (WRB) was the tipping point in 
recognizing the surface substrates of technogenic landscapes as soils. From this 
moment, the modern classification of the soils of technogenic landscapes began.

WRB classifies not only formations with “traditional” soil attributes but also 
any substrates located within two meters from the surface and in contact with the 
atmosphere (except for ice and water bodies deeper than 2 meters). The classification 
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principles are based on the measurable soil profile attributes. Their relations to soil-
forming processes and the possible use of the soils are also taken into account. The 
key feature of Technosols is a significant amount (≥ 20%) of artifacts in the top 
layer 1 m thick and/or the presence of a low-permeability artificial geomembrane. 
The key qualifiers, specific to Technosols, include Ekranic, Urbic, Spolic, Garbic, 
stony and over-compacted soil qualifiers, Isolatic, Linic, Leptic, Hyperskeletic, and 
Subaquatic, Tidalic, Reductic, and Cryic only [119].

With its sufficiently broad interpretation of the soil concept and classification 
principles, allowing national classification systems to be fitted into, the WRB system 
has quickly gained popularity [100, 101, 120–123]. However, it should be noted that 
in most listed studies, the use of the WRB classification is limited to the use of the 
term Technosol without further subdivision into reference soil groups. Even fewer 
works assess technogenic landscape soils with additional qualifiers [39, 62, 120].

Another general substantive classification of the technogenic landscape soils 
is the Soil Taxonomy developed by the US Department of Agriculture [124]. In 
this classification, the soils of technogenic landscapes are not separated as an 
individual group. By their genetic properties, most of these soils are categorized 
as order Entisols: young soils without morphologically distinct horizons [49, 
65, 125]. The suborders are divided by soil moistening and thermal conditions. 
By mineral component properties, stony soils of technogenic landscapes are 
categorized within the suborder of Orthents. In contrast, sandy soils belong to the 
suborder of Psamments. The suborders are divided into great groups based mainly 
on temperature and water regime characteristics. Thus, stony soils of technogenic 
landscapes in areas with precipitation equally distributed throughout the year (udic 
moisture regime) belong to the suborder of Udorthernts [43, 46, 113, 126]. In the 
areas with a temporarily dry climate (ustic moisture regime), these soils should be 
classified as Ustorthents. Special attention to the anthropogenic influence on soil 
formation is paid at the subgroup level. Among other subgroups, there are subgroups 
diagnosed by the presence of human-altered or human-transported materials in 
soil profiles. The soils of technogenic landscapes mainly belong to the subgroups 
of Anthrodensic soils (soils with a dense contact due to mechanical compaction, 
e.g., compacted mine spoil) and Anthroportic soils (soils having 50 cm or more of 
human-transported material in their profile). However, the Typic subgroup is more 
often used to describe such soils [43, 113]. The soils of technogenic landscapes with 
better-developed genetic horizons can be classified as the order of Inceptisols [49]. 
More detail is added at the level of soil families (within subgroups), where classes 
for human-altered and human-transported are specified: Methanogenic, Asphaltic, 
Concretic, Gypsifactic, Combustic, Pyrocarbonic, etc. Local soil characteristics 
can be reflected at the series level. Finally, landscape features (slope steepness, 
slope exposure, the presence of new material in surface cover, etc.) are taken into 
account at the lower level of taxonomy (soil phase), which is essential for the soil 
classification and practical use [124]. Although Soil Taxonomy is a very complex 
and practically oriented classification system, it is not used much when dealing with 
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the soils of technogenic landscapes in the United States. Often, other terms are used, 
e.g., minesoils [37, 43].

The groupings of human-transformed soils and some other national soil 
classifications [5, 126–129] are also based on substantive principles. The new 
Russian soil classification system (RSC) also belongs to substantive-genetic 
classification systems [130]. According to its principles, formations with 
“rudiments” (morphologically unexpressed genetic horizons) cannot be diagnosed 
as soils because they do not have sufficiently conservative features. It is proposed 
to call them “technogenic surface formations” (TSF) and, unlike soils, divide them 
not into classes, types, and subtypes, but groups and subgroups. Such groups are 
distinguished by formation conditions and potential suitability for further use. 
For instance, Quasizems are TSFs, in which the surface is composed of humified 
substrates. Naturfabricants are TSFs devoid of a humus layer and formed of mineral, 
organic, or organomineral materials. Artifabricants include TSFs composed of filled 
artificial material of various origins (household, industrial, and agricultural waste). 
An advantage of the RSC is separating a specific group of Toxifabricants TSFs 
composed of toxic substrates. Unfortunately, more detailed diagnostics taking into 
account the nature and degree of toxicity is not developed yet. The criteria for 
distinguishing TSF subgroups are material composition and occurrence.

Technogenic formations with poorly developed genetic horizons (W: weakly 
developed humus layer and/or O: litter and peat layer) are categorized as the initial 
soil formation trunk, poorly developed soil order [131]. Depending on the soil-
forming rock composition, poorly developed soils are divided into petrozems, 
psammozems, and pelozems with further specification into humic, calcareous, 
and gypsiferous soils (e.g., types petrozems, humus (protohumus) petrozems, 
carbopetrozems, and gypsum petrozems). The fundamental division into TSF and 
poorly developed soils, and the unique features of their functioning in technogenic 
landscapes, make the diagnostics and soil/non-soil identification quite challenging 
[80]. Still, the RSC is often widely used in the Russian academic literature on 
disturbed areas [75, 84, 132, 133].

The classification of the technogenic landscape soils developed by the Institute 
for Soil Science and Agrochemistry (ISSA), Siberian Branch, Russian Academy 
of Science [34, 104, 134–136] offers a more detailed differentiation of surface 
formations at the rock-soil interface. This classification is generally applied in 
Russian academic literature. According to the principles of this classification, 
just like in the WRB, any surface substrate in contact with the atmosphere is 
categorized as soil [137]. In the ISSA classification, the technogenic landscape 
soils are categorized not as TSF and not as initial soils (like in the RSC) but as 
the post-lithogenic soil formation trunk. Instead of orders, this system has classes 
(branches) distinguished by the lithoreflectivity of soil-forming rocks. Embryozem 
soils are categorized as biogenically undeveloped soils. Embryozems are formed 
on clay, loamy and sandy substrates and easily weathered stony sedimentary 
rocks. The lithogenically undeveloped soils class includes Eluviozems. They are 
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developed on coarse-clastic massively crystalline and strongly metamorphosed 
sedimentary rocks. The Technozem class includes the soils with artificially formed 
horizons. According to the number of artificial horizons, Technozems are divided 
into differentiated and nondifferentiated types.

Embryozems and Eluviozems are divided into types by the soil features 
governed by the plant community development. Initial, organic-accumulative, 
sod, humus-accumulative, and dry peat types are distinguished, and their 
gleyic analogs for the Embryozem class are identified. In the first versions of 
the classification [67, 137], the Embryozem subtypes were distinguished by 
the processes accompanying the primary type-diagnostic processes (e.g., 
typical, leached, podzolic). However, with the broader geographic coverage of 
the technogenic landscape studies and factual basis, the approaches to subtype 
differentiation have changed. Therefore, in the latest ISSA classification editions 
[138], the properties of the type-diagnostic horizons reflecting the conditions of 
soil formation are used as the subtype criteria. Along with typical subtypes, the 
cryptopedogenic subtype is distinguished in initial embryozems. Felty, litter, and 
peat subtypes are distinguished in organic-accumulative soils. Xerophytic and 
hygrophytic are distinguished in sod soils, and the coarse humus-accumulative 
subtype is distinguished in humus-accumulative soils.

With such approaches to the soils grouping, the ISSA soil classification is more 
functional-genetic than substantive. Therefore, this classification significantly 
simplifies the mapping of technogenic landscapes and facilitates the quantitative 
assessment of their soil-ecological state [4, 105, 139], particularly using remote 
sensing methods [140].

Despite the different approaches to soil diagnostics in the above classifications, 
we tried to correlate the major taxa by the features representing soil conditions and 
young soil formation trends (Table 2). Table 2 shows that the features based on the 
soil-forming rock properties are sufficiently represented in all classifications. The 
same applies to the constructed soils with artificially created horizons. The exception 
is technogenic landscapes composed of toxic rocks. In some classifications (RSC 
and the Soil Taxonomy), such substrates are not considered soils because they do 
not fulfill one of the main functions: enabling growth and development of plant 
communities. However, the rock toxicity to specific plant species may be different. 
Therefore, in our opinion, they should be classified as soils. In the WRB, the soil 
toxicity is accounted for by the Toxic additional qualifier. In the ISSA classification, 
the soils formed on toxic rocks and the soils not featuring organogenic horizons yet 
are identified as initial Embryozems and Eluviozems.

The effects of elementary soil processes, despite their weak performance in 
technogenic landscapes, can be assessed using natural soil features. For the soils 
of technogenic landscapes, the most suitable features for such assessment are the 
accumulation of organic matter: humus, litter, and peat accumulation. In addition, 
the organogenic horizon features in the sites with climax vegetation communities 
enable us to identify the soil formation trends [138].
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Evaluating the suitability of the considered classification approach for the 
technogenic landscape soils, we can conclude that all of them are applicable 
for adequate assessment of these soils. However, the literature review indicates 
low demand for such classifications. In the studies where modern classifications 
are referred, soil diagnostics are limited to top-order taxa only. We suppose that 
the main reason is the relatively short period of special studies of these soils. 
Secondly, most classifications rely mainly on inherited rock features, making it 
difficult to consider the spatial heterogeneity of technogenic landscapes.

Table  2
Key technogenic landscape soil taxa used in most common classification systems

Features/
processes

Classification

RSC (2004, 2008) WRB (2015) Soil Taxonomy 
(2014)

ISSA Soil 
Classification
(2010, 2020)

Soil-forming rocks

Dense

Naturfabricats and 
Toxifabricants: 
(toxi-) abralites, 

(toxi-) lithostrates
(carbo-, gypsum-) 

petrozems and 
(carbo-, gypsum-) 
humus petrozems

Technosol: Ekranic, 
Urbic, Spolic, 
Linic, Leptic, 
Hyperskeletic

Entisols: Orth-
ents, Udorthents, 
and Ustorthents
All Inceptisols

All Eluviozems 
and Embryozems

Loose

All Naturfabricants, 
Artifabricants, and 

Toxifabricants
Pelozems and 
Psammozems, 

humus Pelozems 
and Psammozems

Technosol: Urbic, 
Spolic, Garbic, 
Reductic, Cryic

Entisols: Psam-
ments, Fluvents
All Inceptisols

All Embryozems

Toxic All Toxifabricants Technosol with 
toxic horizons N/A* Initial Eluviozems 

and Embryozems

Constructed 
soils

Quasizems: 
Replantozems and 

Urbiquasizems

Technosol: Isolatic, 
Linic, with Trans-

portic features
Entisols: Fluvents

Differentiated and 
undifferentiated 

Technozems

Organic accumulation features

Litter 
accumulation

Pelozems,  
Psammozems,

(carbo-, gypsum-) 
Petrozems

All Technosol with 
Folic and Proto-
folic horizons

Inceptisols: 
Gelepts, Cryepts, 
Udepts, Ustepts

Organic-accu-
mulative and sod 
Embryozems and 

Eluviozems

Humus 
accumulation

Humus Pelozems 
and Psammozems 
(carbo-, gypsum-) 

Petrozems

All Technosol with 
Humic, Molic, 

Umbric horizons

Inceptisols: 
Cyepts, Udepts,
Ustepts, Xerepts

Sod and humus-
accumulative 
embryozems

Peat 
accumulation

Pelozems,  
Psammozems,

(carbo-, gypsum-) 
Petrozems

Technosol with 
Histic horizons

Inceptisols: 
Aquepts, Gelepts, 
Cryepts, Udepts

Organic-accumula-
tive peat Embryo-
zems and dry peat 

Eluviozems
Note. N/A: no data available.
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Conclusion

The literature review indicates that, at present, the soils of technogenic 
landscapes are of scientific interest globally. An essential part of the studies is 
local and aimed at analyzing the soil features of individual technogenic sites. 
However, the geographic coverage of soil studies in technogenic landscapes 
has expanded in recent years. With their short lifespan and specific formation 
factors, the soils of technogenic landscapes are not in equilibrium with the 
environment. Therefore, their key feature is dynamic transformation. Trends 
of soil-forming processes in technogenic landscapes do not always follow the 
zonal features. The formation trends of zonal and technogenic soil coincide if 
artificial substrates have properties close to soil-forming rocks in undisturbed 
soils. Along with soil-forming rock properties, young soils are often formed by 
organic matter accumulation processes. In various conditions, it could be humus, 
litter, and peat accumulation. High humus accumulation rates in the soils of 
technogenic landscapes are detected not only in moderate climate areas but also 
in a hotter and more humid climate. This is possible on rocks enriched with fine 
particles or capable of releasing them through weathering. The high density of 
technogenic substrates and their shrinkage negatively affect soil formation. The 
surface of most technogenic landscapes is highly differentiated by relief, density, 
composition, and some other soil-forming rock properties. In such conditions, 
the development of soils and topsoil is diversified, while the divergence of soil 
geochemical processes in time and space contributes to the further isolation of 
evolutionary trends, which are often opposite.

The soil formation efficiency in technogenic landscapes is primarily determined 
by the efficiency of reclamation activities, which depends on the availability of 
resources and their use in due time. The maximum efficiency is achieved if all the 
conditions and resources for reclamation are evaluated at the planning stage. At the 
engineering and, even more so, at the subsequent biological stage, there are few 
opportunities to improve the reclamation efficiency. Therefore, under a shortage 
of FSL and PFS, the artificial substrates should spatially and vertically alternate 
reasonably, and diverse relief formation methods should be used. It is necessary 
to: a) efficiently use reclamation resources; b) avoid “exotic” combinations of 
soil-forming rock properties, climatic conditions, and plant species used at the 
biological stage; c) increase the biological diversity of technogenic landscape.

Modern soil classifications are sufficient for evaluating the properties and fea-
tures of the soil formation in technogenic landscapes. At the same time, the lit-
erature review indicates low demand for such classifications. In the works where 
modern classifications are referred, soil diagnostics are limited to top-order taxa 
only. This fact, as well as individual features of each technogenic landscape and 
the lack of appropriate generalization, negatively affect the development of the 
functioning and reclamation concepts of technogenic landscapes. The develop-
ment of the methods and approaches to assessing their soil-ecological state also 
gets complicated, as well as the design and improvement of reclamation technolo-
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gies. We believe that our analysis of the soil properties, classifications, and ap-
proaches to reclamation will contribute to a better understanding of technogenic 
landscape functioning and their efficient use, and will promote further research on 
the concepts of the soil formation in technogenic landscapes.
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