1,072 research outputs found

    Allelopathy And Weed Competition

    Get PDF
    Currently, only two herbicides, LondaxĀ® (bensulfuron) and TaipanĀ® (benzofenap) are available for the effective control of all four major broadleaf weeds infesting NSW rice paddocks. Prolonged and widespread use of these two herbicides in the rice growing regions increases the threat of herbicide resistance. The low likelihood of new herbicides in the foreseeable future increases the impact of herbicide resistance on the Australian rice industry. Allelopathy, chemical interactions between plants, is an alternative control option. Weeds could be controlled by using crops which have been developed to exert their own weed control by releasing chemicals into the soil. These naturally occurring compounds could play a valuable role in an integrated weed management system, potentially reducing the amount of synthetic herbicides required for weed control. In rice, the potential use of allelopathy in weed control has been explored by several researchers worldwide. Funding for work on allelopathic potential was provided by the Rice CRC as they recognised that the Australian weed community is very different and many of the weeds infesting rice paddocks are typically Australian problems not likely to be tackled by international research groups. Twenty-seven rice cultivars were examined in the laboratory for their allelopathic potential against several currently important and potentially important rice weeds in Australia, namely barnyard grass (Echinochloa crus-galli), dirty dora (Cyperus difformis), lance-leaved water plantain (Alisma lanceolatum), starfruit (Damasonium minus), arrowhead (Sagittaria montevidensis) and S. graminea. Weed root growth inhibition ranged from 0.3 % to 93.6 % of the control depending on the cultivar and the weed species being tested. One weed was actually stimulated by Langi. Several rice varieties significantly inhibited root growth of more than one weed. A field trial using starfruit as the test species was conducted to see if those cultivars which inhibited starfruit in the laboratory experiment also inhibited starfruit in the field and to determine whether allelopathy was an important factor in the resulting field performance. Twenty-four cultivars were used in a field trial based at the Yanco Agricultural Institute. Starfruit dry matter was measured as an indicator of weed inhibition. It was found that there was a correlation between laboratory and field results, and that allelopathy was an important contributor to field performance of a rice variety

    Non-equilibrium supercurrent through mesoscopic ferromagnetic weak links

    Full text link
    We consider a mesoscopic normal metal, where the spin degeneracy is lifted by a ferromagnetic exchange field or Zeeman splitting, coupled to two superconducting reservoirs. As a function of the exchange field or the distance between the reservoirs, the supercurrent through this device oscillates with an exponentially decreasing envelope. This phenomenon is similar to the tuning of a supercurrent by a non-equilibrium quasiparticle distribution between two voltage-biased reservoirs. We propose a device combining the exchange field and non-equilibrium effects, which allows us to observe a range of novel phenomena. For instance, part of the field-suppressed supercurrent can be recovered by a voltage between the additional probes.Comment: 7 pages, 8 figures, Europhys. Lett., to be published, corrected two reference

    Shear Viscosity in the O(N) Model

    Full text link
    We compute the shear viscosity in the O(N) model at first nontrivial order in the large N expansion. The calculation is organized using the 1/N expansion of the 2PI effective action (2PI-1/N expansion) to next-to-leading order, which leads to an integral equation summing ladder and bubble diagrams. We also consider the weakly coupled theory for arbitrary N, using the three-loop expansion of the 2PI effective action. In the limit of weak coupling and vanishing mass, we find an approximate analytical solution of the integral equation. For general coupling and mass, the integral equation is solved numerically using a variational approach. The shear viscosity turns out to be close to the result obtained in the weak-coupling analysis.Comment: 37 pages, few typos corrected; to appear in JHE

    Degenerate distributions in complex Langevin dynamics: one-dimensional QCD at finite chemical potential

    Full text link
    We demonstrate analytically that complex Langevin dynamics can solve the sign problem in one-dimensional QCD in the thermodynamic limit. In particular, it is shown that the contributions from the complex and highly oscillating spectral density of the Dirac operator to the chiral condensate are taken into account correctly. We find an infinite number of classical fixed points of the Langevin flow in the thermodynamic limit. The correct solution originates from a continuum of degenerate distributions in the complexified space.Comment: 20 pages, several eps figures, minor comments added, to appear in JHE

    Spin accumulation induced resistance in mesoscopic ferromagnet/ superconductor junctions

    Get PDF
    We present a description of spin-polarized transport in mesoscopic ferromagnet-superconductor (F/S) systems, where the transport is diffusive, and the interfaces are transparent. It is shown that the spin reversal associated with Andreev reflection generates an excess spin density close to the F/S interface, which leads to a spin contact resistance. Expressions for the contact resistance are given for two terminal and four terminal geometries. In the latter the sign depends on the relative magnetization of the ferromagnetic electrodes.Comment: RevTeX 10 pages, 4 figures, submitted to Phys.Rev. Let

    Renormalizing the Schwinger-Dyson equations in the auxiliary field formulation of Ī»Ļ•4\lambda \phi^4 field theory

    Full text link
    In this paper we study the renormalization of the Schwinger-Dyson equations that arise in the auxiliary field formulation of the O(N) Ļ•4\phi^4 field theory. The auxiliary field formulation allows a simple interpretation of the large-N expansion as a loop expansion of the generating functional in the auxiliary field Ļ‡\chi, once the effective action is obtained by integrating over the Ļ•\phi fields. Our all orders result is then used to obtain finite renormalized Schwinger-Dyson equations based on truncation expansions which utilize the two-particle irreducible (2-PI) generating function formalism. We first do an all orders renormalization of the two- and three-point function equations in the vacuum sector. This result is then used to obtain explicitly finite and renormalization constant independent self-consistent S-D equations valid to order~1/N, in both 2+1 and 3+1 dimensions. We compare the results for the real and imaginary parts of the renormalized Green's functions with the related \emph{sunset} approximation to the 2-PI equations discussed by Van Hees and Knoll, and comment on the importance of the Landau pole effect.Comment: 20 pages, 10 figure

    Lattice worldline representation of correlators in a background field

    Get PDF
    We use a discrete worldline representation in order to study the continuum limit of the one-loop expectation value of dimension two and four local operators in a background field. We illustrate this technique in the case of a scalar field coupled to a non-Abelian background gauge field. The first two coefficients of the expansion in powers of the lattice spacing can be expressed as sums over random walks on a d-dimensional cubic lattice. Using combinatorial identities for the distribution of the areas of closed random walks on a lattice, these coefficients can be turned into simple integrals. Our results are valid for an anisotropic lattice, with arbitrary lattice spacings in each direction.Comment: 54 pages, 14 figure

    Talking quiescence: a rigorous theory that supports parallel composition, action hiding and determinisation

    Get PDF
    The notion of quiescence - the absence of outputs - is vital in both behavioural modelling and testing theory. Although the need for quiescence was already recognised in the 90s, it has only been treated as a second-class citizen thus far. This paper moves quiescence into the foreground and introduces the notion of quiescent transition systems (QTSs): an extension of regular input-output transition systems (IOTSs) in which quiescence is represented explicitly, via quiescent transitions. Four carefully crafted rules on the use of quiescent transitions ensure that our QTSs naturally capture quiescent behaviour. We present the building blocks for a comprehensive theory on QTSs supporting parallel composition, action hiding and determinisation. In particular, we prove that these operations preserve all the aforementioned rules. Additionally, we provide a way to transform existing IOTSs into QTSs, allowing even IOTSs as input that already contain some quiescent transitions. As an important application, we show how our QTS framework simplifies the fundamental model-based testing theory formalised around ioco.Comment: In Proceedings MBT 2012, arXiv:1202.582

    Far-from-equilibrium quantum many-body dynamics

    Full text link
    The theory of real-time quantum many-body dynamics as put forward in Ref. [arXiv:0710.4627] is evaluated in detail. The formulation is based on a generating functional of correlation functions where the Keldysh contour is closed at a given time. Extending the Keldysh contour from this time to a later time leads to a dynamic flow of the generating functional. This flow describes the dynamics of the system and has an explicit causal structure. In the present work it is evaluated within a vertex expansion of the effective action leading to time evolution equations for Green functions. These equations are applicable for strongly interacting systems as well as for studying the late-time behaviour of nonequilibrium time evolution. For the specific case of a bosonic N-component phi^4 theory with contact interactions an s-channel truncation is identified to yield equations identical to those derived from the 2PI effective action in next-to-leading order of a 1/N expansion. The presented approach allows to directly obtain non-perturbative dynamic equations beyond the widely used 2PI approximations.Comment: 20 pp., 6 figs; submitted version with added references and typos corrected

    Towards flavour diffusion coefficient and electrical conductivity without ultraviolet contamination

    Full text link
    By subtracting from a recent lattice measurement of the thermal vector-current correlator the known 5-loop vacuum contribution, we demonstrate that the remainder is small and shows no visible short-distance divergence. It can therefore in principle be subjected to model-independent analytic continuation. Testing a particular implementation, we obtain estimates for the flavour-diffusion coefficient (2 pi T D \gsim 0.8) and electrical conductivity which are significantly smaller than previous results. Although systematic errors remain beyond control at present, some aspects of our approach could be of a wider applicability.Comment: 7 pages. v2: clarifications added, published versio
    • ā€¦
    corecore