665 research outputs found

    Infrared cameras overestimate skin temperature during rewarming from cold exposure

    Get PDF
    This is an accepted manuscript of an article published by Elsevier in Journal of Thermal Biology on 03/05/2020, available online: https://doi.org/10.1016/j.jtherbio.2020.102614 The accepted version of the publication may differ from the final published version.Objective The primary aim of this study was to assess the accuracy of an infrared camera and that of a skin thermistor, both commercially available. The study aimed to assess the agreement over a wide range of skin temperatures following cold exposure. Methods Fifty-two males placed their right hand in a thin plastic bag and immersed it in 8 °C water for 30 min whilst seated in an air temperature of 30 °C. Following hand immersion, participants removed the bag and rested their hand at heart level for 10 min. Index finger skin temperature (Tsk) was measured with a thermistor, affixed to the finger pad, and an infrared camera measured 1 cm distally to the thermistor. Agreement between the infrared camera and thermistor was assessed by mean difference (infrared camera minus thermistor) and 95% limits of agreement analysis, accounting for the repeated measures over time. The clinically significant threshold for Tsk differences was set at ±0.5 °C and limits of agreement ±1 °C. Results As an average across all time points, the infrared camera recorded Tsk 1.80 (SD 1.16) °C warmer than the thermistor, with 95% limits of agreement ranging from −0.46 °C to 4.07 °C. Conclusion Collectively, the results show the infrared camera overestimated Tsk at every time point following local cooling. Further, measurement of finger Tsk from the infrared camera consistently fell outside the acceptable level of agreement (i.e. mean difference exceeding ±0.5 °C). Considering these results, infrared cameras may overestimate peripheral Tsk following cold exposure and clinicians and practitioners should, therefore, adjust their risk/withdrawal criteria accordingly.Published versio

    Rapidly rotating second-generation progenitors for the blue hook stars of {\omega} Cen

    Full text link
    Horizontal Branch stars belong to an advanced stage in the evolution of the oldest stellar galactic population, occurring either as field halo stars or grouped in globular clusters. The discovery of multiple populations in these clusters, that were previously believed to have single populations gave rise to the currently accepted theory that the hottest horizontal branch members (the blue hook stars, which had late helium-core flash ignition, followed by deep mixing) are the progeny of a helium-rich "second generation" of stars. It is not known why such a supposedly rare event (a late flash followed by mixing) is so common that the blue hook of {\omega} Cen contains \sim 30% of horizontal branch stars 10 , or why the blue hook luminosity range in this massive cluster cannot be reproduced by models. Here we report that the presence of helium core masses up to \sim 0.04 solar masses larger than the core mass resulting from evolution is required to solve the luminosity range problem. We model this by taking into account the dispersion in rotation rates achieved by the progenitors, whose premain sequence accretion disc suffered an early disruption in the dense environment of the cluster's central regions where second-generation stars form. Rotation may also account for frequent late-flash-mixing events in massive globular clusters.Comment: 44 pages, 8 figures, 2 tables in Nature, online june 22, 201

    Serotonin regulates prostate growth through androgen receptor modulation

    Get PDF
    Serotonin regulates prostate growth through androgen receptor modulationAging and testosterone almost inexorably cause benign prostatic hyperplasia (BPH) in Human males. However, etiology of BPH is largely unknown. Serotonin (5-HT) is produced by neuroendocrine prostatic cells and presents in high concentration in normal prostatic transition zone, but its function in prostate physiology is unknown. Previous evidence demonstrated that neuroendocrine cells and 5-HT are decreased in BPH compared to normal prostate. Here, we show that 5-HT is a strong negative regulator of prostate growth. In vitro, 5-HT inhibits rat prostate branching through down-regulation of androgen receptor (AR). This 5-HT's inhibitory mechanism is also present in human cells of normal prostate and BPH, namely in cell lines expressing AR when treated with testosterone. In both models, 5-HT's inhibitory mechanism was replicated by specific agonists of 5-Htr1a and 5-Htr1b. Since peripheral 5-HT production is specifically regulated by tryptophan hydroxylase 1(Tph1), we showed that Tph1 knockout mice present higher prostate mass and up-regulation of AR when compared to wild-type, whereas 5-HT treatment restored the prostate weight and AR levels. As 5-HT is decreased in BPH, we present here evidence that links 5-HT depletion to BPH etiology through modulation of AR. Serotoninergic prostate pathway should be explored as a new therapeutic target for BPH.Projects NORTE-01-0246-FEDER-000012, NORTE-01-0145-FEDER-000013 and NORTE-01-0145-FEDER-000023, supported by the Northern Portugal Regional Operational Program (NORTE 2020), under the Portugal 2020 Partnership Agreement, through the European Regional Development Fund (FEDER) and Bolsa de Investigação GSK Inovação em Urologia 2012info:eu-repo/semantics/publishedVersio

    Decreased surfactant phosphatidylcholine synthesis in neonates with congenital diaphragmatic hernia during extracorporeal membrane oxygenation

    Get PDF
    Purpose: Congenital diaphragmatic hernia (CDH) may result in severe respiratory insufficiency with a high morbidity. The role of a disturbed surfactant metabolism in the pathogenesis of CDH is unclear. We therefore studied endogenous surfactant metabolism in the most severe CDH patients who required extracorporeal membrane oxygenation (ECMO). Methods: Eleven neonates with CDH who required ECMO and ten ventilated neonates without significant lung disease received a 24-h infusion of the stable isotope [U-13C] glucose. The13C-incorporation into palmitic acid in surfactant phosphatidylcholine (PC) isolated from serial tracheal aspirates was measured. Mean PC concentration in epithelial lining fluid (ELF) was measured during the first 4 days of the study. Results: Fractional surfactant PC synthesis was decreased in CDH-ECMO patients compared to controls (2.4 ± 0.33 vs. 8.0 ± 2.4%/day, p = 0.04). The control group had a higher maximal enrichment (0.18 ± 0.03 vs. 0.09 ± 0.02 APE, p = 0.04) and reached this maximal enrichment earlier (46.7 ± 3.0 vs. 69.4 ± 6.6 h, p = 0.004) compared to the CDH-ECMO group, which reflects higher and faster precursor incorporation in the control group. Surfactant PC concentration in ELF was similar in both groups. Conclusion: These results show that CDH patients who require ECMO have a decreased surfactant PC synthesis, which may be part of the pathogenesis of severe pulmonary insufficiency and has a negative impact on weaning from ECMO

    Decreased surfactant phosphatidylcholine synthesis in neonates with congenital diaphragmatic hernia during extracorporeal membrane oxygenation

    Get PDF
    Purpose: Congenital diaphragmatic hernia (CDH) may result in severe respiratory insufficiency with a high morbidity. The role of a disturbed surfactant metabolism in the pathogenesis of CDH is unclear. We therefore studied endogenous surfactant metabolism in the most severe CDH patients who required extracorporeal membrane oxygenation (ECMO). Methods: Eleven neonates with CDH who required ECMO and ten ventilated neonates without significant lung disease received a 24-h infusion of the stable isotope [U-13C] glucose. The13C-incorporation into palmitic acid in surfactant phosphatidylcholine (PC) isolated from serial tracheal aspirates was measured. Mean PC concentration in epithelial lining fluid (ELF) was measured during the first 4 days of the study. Results: Fractional surfactant PC synthesis was decreased in CDH-ECMO patients compared to controls (2.4 ± 0.33 vs. 8.0 ± 2.4%/day, p = 0.04). The control group had a higher maximal enrichment (0.18 ± 0.03 vs. 0.09 ± 0.02 APE, p = 0.04) and reached this maximal enrichment earlier (46.7 ± 3.0 vs. 69.4 ± 6.6 h, p = 0.004) compared to the CDH-ECMO group, which reflects higher and faster precursor incorporation in the control group. Surfactant PC concentration in ELF was similar in both groups. Conclusion: These results show that CDH patients who require ECMO have a decreased surfactant PC synthesis, which may be part of the pathogenesis of severe pulmonary insufficiency and has a negative impact on weaning from ECMO

    Expression and trans-specific polymorphism of self-incompatibility RNases in Coffea (Rubiaceae)

    Get PDF
    Self-incompatibility (SI) is widespread in the angiosperms, but identifying the biochemical components of SI mechanisms has proven to be difficult in most lineages. Coffea (coffee; Rubiaceae) is a genus of old-world tropical understory trees in which the vast majority of diploid species utilize a mechanism of gametophytic self-incompatibility (GSI). The S-RNase GSI system was one of the first SI mechanisms to be biochemically characterized, and likely represents the ancestral Eudicot condition as evidenced by its functional characterization in both asterid (Solanaceae, Plantaginaceae) and rosid (Rosaceae) lineages. The S-RNase GSI mechanism employs the activity of class III RNase T2 proteins to terminate the growth of "self" pollen tubes. Here, we investigate the mechanism of Coffea GSI and specifically examine the potential for homology to S-RNase GSI by sequencing class III RNase T2 genes in populations of 14 African and Madagascan Coffea species and the closely related self-compatible species Psilanthus ebracteolatus. Phylogenetic analyses of these sequences aligned to a diverse sample of plant RNase T2 genes show that the Coffea genome contains at least three class III RNase T2 genes. Patterns of tissue-specific gene expression identify one of these RNase T2 genes as the putative Coffea S-RNase gene. We show that populations of SI Coffea are remarkably polymorphic for putative S-RNase alleles, and exhibit a persistent pattern of trans-specific polymorphism characteristic of all S-RNase genes previously isolated from GSI Eudicot lineages. We thus conclude that Coffea GSI is most likely homologous to the classic Eudicot S-RNase system, which was retained since the divergence of the Rubiaceae lineage from an ancient SI Eudicot ancestor, nearly 90 million years ago.United States National Science Foundation [0849186]; Society of Systematic Biologists; American Society of Plant Taxonomists; Duke University Graduate Schoolinfo:eu-repo/semantics/publishedVersio

    Regulación de la expresión de IL-33 e IL-17 por la modulación farmacológica de HIF-1 en un modelo murino de inflamación alérgica pulmonar

    Get PDF
    Objetivo: Evaluar el efecto de la modulación farmacológica de HIF-1 en la expresión de IL-33 e IL-17 en un modelo murino de inflamación alérgica pulmonar (IAP) con diferentes grados de severidad. Métodos: 5 ratones/grupo recibieron ovoalbúmina (OVA) 1(leve), 2(moderada) o 3(severa) retos vía i.t. previa sensibilización como alergeno, además los grupos de inducción o inhibición de HIF-1α, recibieron EDHB (OVA+EDHB) i.p. o 2ME (OVA+2ME) i.t. respectivamente. Los grupos controles recibieron solución salina (SS) de igual forma. Se realizaron tinciones de HE (infiltrado inflamatorio), PAS (producción de moco) e inmunohistoquímicas de HIF-1α, IL-33, IL-17, analizando cuantitativamente por patología digital. Resultados: Obtuvimos diferentes grados de severidad a mayor número de retos, incrementando la expresión de HIF-1, correlacionando con la expresión de IL- 33/IL-17. Aumentando o disminuyendo, respectivamente por la modulación farmacológica. Conclusiones: Lo anterior sugiere que la alta expresión de HIF-1 favorece la producción de IL-33 e IL-17 contribuyendo al daño en el tejido pulmonar y la severidad de la enfermedad y estas pueden ser reguladas a través de la modulación de HIF-1

    Locomotor adaptation to a powered ankle-foot orthosis depends on control method

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We studied human locomotor adaptation to powered ankle-foot orthoses with the intent of identifying differences between two different orthosis control methods. The first orthosis control method used a footswitch to provide bang-bang control (a kinematic control) and the second orthosis control method used a proportional myoelectric signal from the soleus (a physiological control). Both controllers activated an artificial pneumatic muscle providing plantar flexion torque.</p> <p>Methods</p> <p>Subjects walked on a treadmill for two thirty-minute sessions spaced three days apart under either footswitch control (n = 6) or myoelectric control (n = 6). We recorded lower limb electromyography (EMG), joint kinematics, and orthosis kinetics. We compared stance phase EMG amplitudes, correlation of joint angle patterns, and mechanical work performed by the powered orthosis between the two controllers over time.</p> <p>Results</p> <p>During steady state at the end of the second session, subjects using proportional myoelectric control had much lower soleus and gastrocnemius activation than the subjects using footswitch control. The substantial decrease in triceps surae recruitment allowed the proportional myoelectric control subjects to walk with ankle kinematics close to normal and reduce negative work performed by the orthosis. The footswitch control subjects walked with substantially perturbed ankle kinematics and performed more negative work with the orthosis.</p> <p>Conclusion</p> <p>These results provide evidence that the choice of orthosis control method can greatly alter how humans adapt to powered orthosis assistance during walking. Specifically, proportional myoelectric control results in larger reductions in muscle activation and gait kinematics more similar to normal compared to footswitch control.</p

    Quantifying the health impacts of ambient air pollutants: recommendations of a WHO/Europe project.

    Get PDF
    OBJECTIVE: Quantitative estimates of air pollution health impacts have become an increasingly critical input to policy decisions. The WHO project "Health risks of air pollution in Europe--HRAPIE" was implemented to provide the evidence-based concentration-response functions for quantifying air pollution health impacts to support the 2013 revision of the air quality policy for the European Union (EU). METHODS: A group of experts convened by WHO Regional Office for Europe reviewed the accumulated primary research evidence together with some commissioned reviews and recommended concentration-response functions for air pollutant-health outcome pairs for which there was sufficient evidence for a causal association. RESULTS: The concentration-response functions link several indicators of mortality and morbidity with short- and long-term exposure to particulate matter, ozone and nitrogen dioxide. The project also provides guidance on the use of these functions and associated baseline health information in the cost-benefit analysis. CONCLUSIONS: The project results provide the scientific basis for formulating policy actions to improve air quality and thereby reduce the burden of disease associated with air pollution in Europe
    corecore