15 research outputs found

    Resting metabolic rate and lung function in wild offshore common bottlenose dolphins, Tursiops truncatus, near Bermuda

    Get PDF
    © The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Frontiers in Physiology 9 (2018): 886, doi:10.3389/fphys.2018.00886.Diving mammals have evolved a suite of physiological adaptations to manage respiratory gases during extended breath-hold dives. To test the hypothesis that offshore bottlenose dolphins have evolved physiological adaptations to improve their ability for extended deep dives and as protection for lung barotrauma, we investigated the lung function and respiratory physiology of four wild common bottlenose dolphins (Tursiops truncatus) near the island of Bermuda. We measured blood hematocrit (Hct, %), resting metabolic rate (RMR, l O2 ⋅ min-1), tidal volume (VT, l), respiratory frequency (fR, breaths ⋅ min-1), respiratory flow (l ⋅ min-1), and dynamic lung compliance (CL, l ⋅ cmH2O-1) in air and in water, and compared measurements with published results from coastal, shallow-diving dolphins. We found that offshore dolphins had greater Hct (56 ± 2%) compared to shallow-diving bottlenose dolphins (range: 30–49%), thus resulting in a greater O2 storage capacity and longer aerobic diving duration. Contrary to our hypothesis, the specific CL (sCL, 0.30 ± 0.12 cmH2O-1) was not different between populations. Neither the mass-specific RMR (3.0 ± 1.7 ml O2 ⋅ min-1 ⋅ kg-1) nor VT (23.0 ± 3.7 ml ⋅ kg-1) were different from coastal ecotype bottlenose dolphins, both in the wild and under managed care, suggesting that deep-diving dolphins do not have metabolic or respiratory adaptations that differ from the shallow-diving ecotypes. The lack of respiratory adaptations for deep diving further support the recently developed hypothesis that gas management in cetaceans is not entirely passive but governed by alteration in the ventilation-perfusion matching, which allows for selective gas exchange to protect against diving related problems such as decompression sickness.Funding for this project was provided by the Office of Naval Research (ONR YIP Award No. N000141410563, and Dolphin Quest, Inc. FHJ was supported by the Office of Naval Research (Award No. N00014-1410410) and an AIAS-COFUND fellowship from Aarhus Institute of Advanced Studies under the FP7 program of the EU (Agreement No. 609033)

    An expert-based system to predict population survival rate from health data

    Get PDF
    This work was supported by the Office of Naval Research Marine Mammal Biology Program [grant number N00014-17-1-2868].Timely detection and understanding of causes for population decline are essential for effective wildlife management and conservation. Assessing trends in population size has been the standard approach but we propose that monitoring population health could prove more effective. We collated data from seven bottlenose dolphin (Tursiops truncatus) populations in southeastern U.S. to develop the Veterinary Expert System for Outcome Prediction (VESOP), which estimates survival probability using a suite of health measures identified by experts as indices for inflammatory, metabolic, pulmonary, and neuroendocrine systems. VESOP was implemented using logistic regression within a Bayesian analysis framework, and parameters were fit using records from five of the sites that had a robust stranding network and frequent photographic identification (photo-ID) surveys to document definitive survival outcomes. We also conducted capture-mark-recapture (CMR) analyses of photo-ID data to obtain separate estimates of population survival rates for comparison with VESOP survival estimates. VESOP analyses found multiple measures of health, particularly markers of inflammation, were predictive of 1- and 2-year individual survival. The highest mortality risk one year following health assessment related to low alkaline phosphatase, with an odds ratio of 10.2 (95% CI 3.41-26.8), while 2-year mortality was most influenced by elevated globulin (9.60; 95% CI 3.88-22.4); both are markers of inflammation. The VESOP model predicted population-level survival rates that correlated with estimated survival rates from CMR analyses for the same populations (1-year Pearson's r = 0.99; p = 1.52e-05, 2-year r = 0.94; p = 0.001). While our proposed approach will not detect acute mortality threats that are largely independent of animal health, such as harmful algal blooms, it is applicable for detecting chronic health conditions that increase mortality risk. Random sampling of the population is important and advancement in remote sampling methods could facilitate more random selection of subjects, obtainment of larger sample sizes, and extension of the approach to other wildlife species.Publisher PDFPeer reviewe

    Skin Lesions on Common Bottlenose Dolphins (Tursiops truncatus) from Three Sites in the Northwest Atlantic, USA

    Get PDF
    Skin disease occurs frequently in many cetacean species across the globe; methods to categorize lesions have relied on photo-identification (photo-id), stranding, and by-catch data. The current study used photo-id data from four sampling months during 2009 to estimate skin lesion prevalence and type occurring on bottlenose dolphins (Tursiops truncatus) from three sites along the southeast United States coast [Sarasota Bay, FL (SSB); near Brunswick and Sapelo Island, GA (BSG); and near Charleston, SC (CHS)]. The prevalence of lesions was highest among BSG dolphins (P = 0.587) and lowest in SSB (P = 0.380), and the overall prevalence was significantly different among all sites (p<0.0167). Logistic regression modeling revealed a significant reduction in the odds of lesion occurrence for increasing water temperatures (OR = 0.92; 95%CI:0.906–0.938) and a significantly increased odds of lesion occurrence for BSG dolphins (OR = 1.39; 95%CI:1.203–1.614). Approximately one-third of the lesioned dolphins from each site presented with multiple types, and population differences in lesion type occurrence were observed (p<0.05). Lesions on stranded dolphins were sampled to determine the etiology of different lesion types, which included three visually distinct samples positive for herpesvirus. Although generally considered non-fatal, skin disease may be indicative of animal health or exposure to anthropogenic or environmental threats, and photo-id data provide an efficient and cost-effective approach to document the occurrence of skin lesions in free-ranging populations

    Field energetics and lung function in wild bottlenose dolphins, Tursiops truncatus, in Sarasota Bay Florida

    Get PDF
    © The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Royal Society Open Science 5 (2018): 171280, doi:10.1098/rsos.171280.We measured respiratory flow rates, and expired O2 in 32 (2–34 years, body mass [Mb] range: 73–291 kg) common bottlenose dolphins (Tursiops truncatus) during voluntary breaths on land or in water (between 2014 and 2017). The data were used to measure the resting O2 consumption rate (V˙O2, range: 0.76–9.45ml O2min−1 kg−1) and tidal volume (VT, range: 2.2–10.4 l) during rest. For adult dolphins, the resting VT, but not V˙O2, correlated with body mass (Mb, range: 141–291 kg) with an allometric mass-exponent of 0.41. These data suggest that the mass-specific VT of larger dolphins decreases considerably more than that of terrestrial mammals (mass-exponent: 1.03). The average resting sV˙O2 was similar to previously published metabolic measurements from the same species. Our data indicate that the resting metabolic rate for a 150 kg dolphin would be 3.9 ml O2 min−1 kg−1, and the metabolic rate for active animals, assuming a multiplier of 3–6, would range from 11.7 to 23.4 ml O2 min−1 kg−1.Funding for this project was provided by the Office of Naval Research (ONR YIP Award # N000141410563, Dolphin Quest, Inc., and Woods Hole Oceanographic Institution

    Deep diving by offshore bottlenose dolphins (Tursiops spp.)

    No full text
    We used satellite-linked tags to evaluate dive behavior in offshore bottlenose dolphins (Tursiops spp.) near the island of Bermuda. The data provide evidence that bottlenose dolphins commonly perform both long (&amp;gt;272 s) and deep (&amp;gt;199 m) dives, with the deepest and longest dives being to 1,000 m and 826 s (13.8 min), respectively. The data show a relationship between dive duration and dive depth for dives longer than about 272 s. There was a diurnal pattern to dive behavior, with most dives deeper than 50 m being performed at night; deep diving began at sunset and varied throughout the night. We used the cumulative frequency of dive duration to estimate a behavioral aerobic dive limit (bADL) of around 560-666 s (9.3-11.1 min) in adult dolphins in this population. Dives exceeding the bADL spent significantly longer time in the upper-most 50 m following a dive as compared with dives less than the bADL. We conclude that the offshore ecotype off Bermuda, unlike the shallow-diving near-shore bottlenose dolphin, is a deep-diving ecotype, and may provide a useful animal model to study extreme diving behavior and adaptations.Funding Agencies|Office of Naval Research (ONR YIP award) [N00014-14-1-0563]; Dolphin Quest Inc.</p

    Development of single-pin, un-barbed, pole-tagging of free-swimming dolphins and sharks with satellite-linked transmitters

    No full text
    Abstract Background To tag large marine vertebrates, without the need to catch them, avoiding using barbs for tag retention, and precisely controlling tag location, the remote Tag Attachment Device on a pole (TADpole) was developed. This allows single-pin tags (Finmount, Wildlife Computers) to be attached to the dorsal fins of free-swimming large marine vertebrates. Results TADpole comprises a pole-mounted holster that carries a tag. It uses compressed air, and a micro-controller, to rapidly insert a stainless-steel pin through a corrodible metal retaining ring in the first tag attachment wing, the animal’s dorsal fin, and then a press fit Delrin retaining ring in the tag wing on the other side of the fin. Tagging only occurs when the trailing edge of the dorsal fin touches a trigger bar in the holster, ensuring optimal pin placement. It was developed using fins from cadavers, then trialed on briefly restrained coastal dolphins that could be followed in successive days and weeks, and then on free-swimming animals in the field. The latter showed very short touch/response intervals and highlighted the need for several iterative revisions of the pneumatic system. This resulted in reducing the total time from triggering to tag application to ~ 20 ms. Subsequent efforts expanded the TADpole’s applicability to sharks. One free-swimming Atlantic spotted dolphin, two white sharks, and one whale shark were then tagged using the TADpole. Conclusions Being able to tag free-swimming dolphins and sharks remotely and precisely with satellite-linked telemetry devices may contribute to solving conservation challenges. Sharks were easier to tag than dolphins. Dolphin touch-to-response times were 28 ms or less. Delphinid skin has unique polymodal axon bundles that project into the epidermis, perhaps a factor in their uniquely fast response, which is 10 × faster than humans. Their primary reaction to tagging is to abduct the flippers and roll the fin out of the TADpole holster. This device has the potential to deliver high-quality tag data from large vertebrates with dorsal fins without the stress and logistics associated with catch-and-release, and without the trauma of tags that use barbs for retention. It also collects a dorsal fin biopsy core

    Skin lesion prevalence and 95% CI for bottlenose dolphins photographed in waters near Charleston, SC (CHS), near Brunswick and Sapelo Island, GA (BSG), and Sarasota Bay, FL (SSB) in 2009.

    No full text
    *<p> <i>Indicates a significant difference with a Bonferroni correction for multiple comparisons (α = 0.0167).</i></p><p> <i>“Photographed” - number of dolphins evaluated for lesions with photographs suitable for lesion detection.</i></p><p> <i>“AWL” - number of dolphins photographed with visible skin lesion(s).</i></p><p> <i>“Prevalence” - proportion of ‘Photographed’ that is ‘AWL’.</i></p><p> <i>(p values are reported for comparisons of skin lesion prevalence between sites).</i></p

    Examples of skin lesion types on free-ranging bottlenose dolphins (<i>Tursiops truncatus</i>) photographed in waters near Charleston, SC (CHS), Brunswick and Sapelo Island, GA (BSG), and Sarasota Bay, FL (SSB) in 2009.

    No full text
    <p>Lesion types include: black (a); pale (b); lunar (c); dark-fringed spots (d); white-fringed spots (e); orange patch (f); tattoo-like (g); white velvety (h); lacaziosis-like (i); vesicular (j); mottled (k); and spotted (l). (Categories from <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0033081#pone.0033081-Wilson1" target="_blank">[3]</a>, <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0033081#pone.0033081-VanBressem2" target="_blank">[5]</a>, <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0033081#pone.0033081-VanBressem3" target="_blank">[9]</a>, <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0033081#pone.0033081-VanBressem4" target="_blank">[12]</a>) Photo credit: B.Balmer, NCCOS/NOS/NOAA, Sarasota Dolphin Research Program.</p
    corecore