28 research outputs found

    Prevention and treatment of infections in intensive care patients:Challenges and potential improvements

    Get PDF
    Infections pose a major threat to intensive care (ICU) patients, with considerable mortality and long-term sequelae in survivors.In this thesis, three major subjects regarding infections in ICU patients are discussed. The aim of included studies is the improvement of prevention and treatment of such infections.The first part describes the incidence of highly resistant microorganisms (HRMOs), comparing characteristics and outcome of ICU-patients with versus those without HRMO. In this cohort, a small but relevant proportion of patients was HRMO-positive, with most HRMOs imported to as opposed to acquired in the ICU. Most HRMOs were Gram-negatives. The clinical outcome was worse in those with HRMO compared to those without HRMO.The second part describes the pharmacokinetics of beta-lactam antibiotics. First, plasma concentrations of continuously dosed piperacillin in ICU-patients were evaluated, followed by evaluation of plasma concentrations of cefotaxime in a randomised trial. In this trial, one group was treated by intermittent, the other group by continuous dosing of cefotaxime. In both trials, continuous dosing did not guarantee the attainment of target concentrations, but in the cefotaxime-trial continuous dosing led to adequate plasma concentrations more often compared to intermittent dosing.The third part describes the dynamics of fecal microbiota in ICU-patients admitted for planned cardiosurgery. Bacterial diversity decreased during admission compared to baseline. Also, the relative abundance of anaerobes, considered part of a ‘healthy’ gut microbiota decreased, whereas the relative abundance of some pathobionts increased. In most patients the change in microbiota during hospital stay reverted to the original composition post-discharge

    Diagnosis and management of temperature abnormality in ICUs: a EUROBACT investigators' survey.

    Get PDF
    Although fever and hypothermia are common abnormal physical signs observed in patients admitted to intensive care units (ICU), little data exist on their optimal management. The objective of this study was to describe contemporary practices and determinants of management of temperature abnormalities among patients admitted to ICUs. Site leaders of the multi-national EUROBACT study were surveyed regarding diagnosis and management of temperature abnormalities among patients admitted to their ICUs. Of the 162 ICUs originally included in EUROBACT, responses were received from 139 (86%) centers in 23 countries in Europe (117), South America (8), Asia (5), North America (4), Australia (3) and Africa (2). A total of 117 (84%) respondents reported use of a specific temperature threshold in their ICU to define fever. A total of 14 different discrete levels were reported with a median of 38.2°C (inter-quartile range, IQR, 38.0°C to 38.5°C). The use of thermometers was protocolized in 91 (65%) ICUs and a wide range of methods were reportedly used, with axillary, tympanic and urinary bladder sites as the most common as primary modalities. Only 31 (22%) of respondents indicated that there was a formal written protocol for temperature control among febrile patients in their ICUs. In most or all cases practice was to control temperature, to use acetaminophen, and to perform a full septic workup in febrile patients and that this was usually directed by physician order. While reported practice was to treat nearly all patients with neurological impairment and most patients with acute coronary syndromes and infections, severe sepsis and septic shock, this was not the case for most patients with liver failure and fever. A wide range of definitions and management practices were reported regarding temperature abnormalities in the critically ill. Documenting temperature abnormality management practices, including variability in clinical care, is important to inform planning of future studies designed to optimize infection and temperature management strategies in the critically ill

    Marked Changes in Gut Microbiota in Cardio-Surgical Intensive Care Patients:A Longitudinal Cohort Study

    Get PDF
    Background: Virtually no studies on the dynamics of the intestinal microbiota in patients admitted to the intensive care unit (ICU) are published, despite the increasingly recognized important role of microbiota on human physiology. Critical care patients undergo treatments that are known to influence the microbiota. However, dynamics and extent of such changes are not yet fully understood. To address this topic, we analyzed the microbiota before, during and after planned major cardio surgery that, for the first time, allowed us to follow the microbial dynamics of critical care patients. In this prospective, observational, longitudinal, single center study, we analyzed the fecal microbiota using 16S rRNA gene sequencing. Results: Samples of 97 patients admitted between April 2015 and November 2016 were included. In 32 patients, data of all three time points (before, during and after admission) were available for analysis. We found a large intra-individual variation in composition of gut microbiota. During admission, a significant change in microbial composition occurred in most patients, with a significant increase in pathobionts combined with a decrease in strictly anaerobic gut bacteria, typically beneficial for health. A lower bacterial diversity during admission was associated with longer hospitalization. In most patients analyzed at all three time points, the change in microbiota during hospital stay reverted to the original composition post-discharge. Conclusions: Our study shows that, even with a short ICU stay, patients present a significant change in microbial composition shortly after admission. The unique longitudinal setup of this study displayed a restoration of the microbiota in most patients to baseline composition post-discharge, which demonstrated its great restorative capacity. A relative decrease in benign or even beneficial bacteria and increase of pathobionts shifts the microbial balance in the gut, which could have clinical relevance. In future studies, the microbiota of ICU patients should be considered a good target for optimisation

    Development and evaluation of uncertainty quantifying machine learning models to predict piperacillin plasma concentrations in critically ill patients

    Get PDF
    Background: Beta-lactam antimicrobial concentrations are frequently suboptimal in critically ill patients. Population pharmacokinetic (PopPK) modeling is the golden standard to predict drug concentrations. However, currently available PopPK models often lack predictive accuracy, making them less suited to guide dosing regimen adaptations. Furthermore, many currently developed models for clinical applications often lack uncertainty quantification. We, therefore, aimed to develop machine learning (ML) models for the prediction of piperacillin plasma concentrations while also providing uncertainty quantification with the aim of clinical practice. Methods: Blood samples for piperacillin analysis were prospectively collected from critically ill patients receiving continuous infusion of piperacillin/tazobactam. Interpretable ML models for the prediction of piperacillin concentrations were designed using CatBoost and Gaussian processes. Distribution-based Uncertainty Quantification was added to the CatBoost model using a proposed Quantile Ensemble method, useable for any model optimizing a quantile function. These models are subsequently evaluated using the distribution coverage error, a proposed interpretable uncertainty quantification calibration metric. Development and internal evaluation of the ML models were performed on the Ghent University Hospital database (752 piperacillin concentrations from 282 patients). Ensuing, ML models were compared with a published PopPK model on a database from the University Medical Centre of Groningen where a different dosing regimen is used (46 piperacillin concentrations from 15 patients.). Results: The best performing model was the Catboost model with an RMSE and R-2 of 31.94-0.64 and 33.53-0.60 for internal evaluation with and without previous concentration. Furthermore, the results prove the added value of the proposed Quantile Ensemble model in providing clinically useful individualized uncertainty predictions and show the limits of homoscedastic methods like Gaussian Processes in clinical applications. Conclusions: Our results show that ML models can consistently estimate piperacillin concentrations with acceptable and high predictive accuracy when identical dosing regimens as in the training data are used while providing highly relevant uncertainty predictions. However, generalization capabilities to other dosing schemes are limited. Notwithstanding, incorporating ML models in therapeutic drug monitoring programs seems definitely promising and the current work provides a basis for validating the model in clinical practice

    Target attainment with continuous dosing of piperacillin/tazobactam in critical illness:A prospective observational study

    Get PDF
    Optimal dosing of β-lactam antibiotics in critically ill patients is a challenge given the unpredictable pharmacokinetic profile of this patient population. Several studies have shown intermittent dosing to often yield inadequate drug concentrations. Continuous dosing is an attractive alternative from a pharmacodynamic point of view. This study evaluated whether, during continuous dosing, piperacillin concentrations reached and maintained a pre-defined target in critically ill patients. Adult patients treated with piperacillin by continuous dosing in the intensive care unit of a university medical centre in The Netherlands were prospectively studied. Total and unbound piperacillin concentrations drawn at fixed time points throughout the entire treatment course were determined by liquid chromatography-tandem mass spectrometry. A pharmacokinetic combined target of a piperacillin concentration ≥80 mg/L, reached within 1 h of starting study treatment AND maintained throughout the treatment course, was set. Eighteen patients were analysed. The median duration of monitored piperacillin treatment was 60 h (interquartile range, 33-96 h). Of the 18 patients, 5 (27.8 %) reached the combined target; 15 (83.3%) reached and maintained a less strict target of >16 mg/L. In this patient cohort, this dosing schedule was insufficient to reach the pre-defined target. Depending on which target is to be met, a larger initial cumulative dose is desirable, combined with therapeutic drug monitoring

    Een vrouw met een dikke tong

    No full text
    A 46-year-old woman had a swollen tongue due to amyloid light chain (AL) amyloidosis caused by multiple myeloma

    Diagnostic image. A woman with a swollen tongue

    No full text
    A 46-year-old woman had a swollen tongue due to amyloid light chain (AL) amyloidosis caused by multiple myeloma.</p
    corecore