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Jan G. Zijlstra3, Alain G. Verstraete4, Veronique Stove4, Pieter Colin5, Femke Ongenae1, Jan J. De Waele6 and 
Sofie Van Hoecke1* 

Abstract 

Background: Beta-lactam antimicrobial concentrations are frequently suboptimal in critically ill patients. Popula-
tion pharmacokinetic (PopPK) modeling is the golden standard to predict drug concentrations. However, currently 
available PopPK models often lack predictive accuracy, making them less suited to guide dosing regimen adaptations. 
Furthermore, many currently developed models for clinical applications often lack uncertainty quantification. We, 
therefore, aimed to develop machine learning (ML) models for the prediction of piperacillin plasma concentrations 
while also providing uncertainty quantification with the aim of clinical practice.

Methods: Blood samples for piperacillin analysis were prospectively collected from critically ill patients receiving 
continuous infusion of piperacillin/tazobactam. Interpretable ML models for the prediction of piperacillin concen-
trations were designed using CatBoost and Gaussian processes. Distribution-based Uncertainty Quantification was 
added to the CatBoost model using a proposed Quantile Ensemble method, useable for any model optimizing a 
quantile function. These models are subsequently evaluated using the distribution coverage error, a proposed inter-
pretable uncertainty quantification calibration metric. Development and internal evaluation of the ML models were 
performed on the Ghent University Hospital database (752 piperacillin concentrations from 282 patients). Ensuing, ML 
models were compared with a published PopPK model on a database from the University Medical Centre of Gronin-
gen where a different dosing regimen is used (46 piperacillin concentrations from 15 patients.).

Results: The best performing model was the Catboost model with an RMSE and R2 of 31.94–0.64 and 33.53–0.60 for 
internal evaluation with and without previous concentration. Furthermore, the results prove the added value of the 
proposed Quantile Ensemble model in providing clinically useful individualized uncertainty predictions and show the 
limits of homoscedastic methods like Gaussian Processes in clinical applications.

Conclusions: Our results show that ML models can consistently estimate piperacillin concentrations with acceptable 
and high predictive accuracy when identical dosing regimens as in the training data are used while providing highly 
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Background
Introduction
The morbidity, mortality, and healthcare costs associated 
with infectious diseases in the Intensive Care Unit (ICU) 
continue to be a major health issue [1]. Antimicrobial 
therapy remains the mainstay of treatment, with pipera-
cillin/tazobactam (TZP) being one of the most frequently 
prescribed antimicrobials in the ICU worldwide [2].

Achieving therapeutic antimicrobial concentrations 
likely improves the clinical outcome, avoids drug toxic-
ity, and reduces the burden of antimicrobial resistance [3, 
4]. In the past few years, a wealth of evidence emerged 
demonstrating possible suboptimal and difficult to pre-
dict beta-lactam antimicrobial concentrations in criti-
cally ill patients following standard dosing regimens [5]. 
Several experts have recommended abandoning this 
‘one-size-fits-all approach’ in ICU patients and have 
moved towards individualized antimicrobial dosing to 
reach therapeutic windows[6, 7]. This decision is based 
on early studies indicating that individualized dosing may 
decrease mortality in ICU patients [3, 8, 9]. An alterna-
tive would be to dose up to the point of toxicity to ensure 
target attainment is reached. For TZP, dose modifications 
and dosing interval adjustments are usually performed 
according to the renal function. A renal dysfunction sug-
gests dose reduction and a very good renal function sug-
gests a longer dosing administration time and/or higher 
dosing [3, 8, 10].

An obstacle limiting the implementation of more 
advanced individualized therapy is the absence of read-
ily available measured beta-lactam antimicrobial con-
centrations in daily routine [3, 11]. Measuring plasma 
concentrations of beta-lactam antimicrobials can be per-
formed using therapeutic drug monitoring (TDM) [12]. 
However, TDM is not routinely performed as the means 
and expertise for TDM are not always available and the 
time interval between sampling and availability of results 
is often long. An alternative to measuring the concentra-
tion is predicting it. Predicting plasma concentrations of 
beta-lactam antimicrobials is possible with Population 
pharmacokinetic (PopPK) analysis. PopPK analysis uses 
non-linear mixed effect modeling to simulate the rela-
tionship between the antimicrobial concentrations, the 
dose, time, and the patient-specific covariates [13]. Once 
a PopPK model is developed, a typical Pharmacokinetic 

(PK) profile can be generated and antimicrobial concen-
trations can be predicted for a given patient [13]. How-
ever, PopPK models are frequently based on (small) 
retrospective datasets from studies that were not primar-
ily aimed towards the development of a PopPK model. 
This results in context-/subgroup-specific models with 
poor extrapolation properties to other datasets [14]. 
Therefore, sample size calculations and simulations to 
optimize the experimental design for PopPK modeling 
are not always performed as they require a considerable 
amount of computational resources [15]. Hence, many of 
the current beta-lactam PopPK models in ICU patients 
often have poor predictive accuracy. As a result, dos-
ing recommendations based on these PopPK models are 
context-specific and vary substantially from one model to 
another [16, 17]. To overcome these limitations of small, 
context- and subpopulation-specific PopPK models, large 
pharmacokinetic data-sharing initiatives are currently 
underway [18].

Another strategy to overcome these PopPK measur-
ing and prediction limitations is to predict antimicrobial 
concentrations with machine learning (ML) models [19]. 
ML uses algorithms to find patterns and relationships in 
data and is not dependent on many underlying domain-
specific assumptions [20]. Therefore, ML models could 
find new relationships between antimicrobial concentra-
tions and covariates and use much more covariates com-
pared to PopPK models.

However, conventional ML predictions often only pro-
vide single outputs without any information about this 
prediction. This all-or-nothing output often limits model 
acceptance and inhibits risk assessments in clinical prac-
tice [21], especially in high-risk environments such as the 
ICU. It is possible to increase the trust and understanding 
in these models by providing extra prediction informa-
tion using uncertainty quantification, which is especially 
useful for making decisions.

Hence, in this paper, we used three regression ML 
models to predict total plasma concentrations of pipera-
cillin in critically ill patients. These models will then be 
compared to a developed and published PopPK model to 
research the added value of ML with respect to PopPK on 
an internal and external dataset. Additionally, a general 
distribution-based uncertainty quantification framework, 
the quantile ensemble, is proposed to provide uncertainty 

relevant uncertainty predictions. However, generalization capabilities to other dosing schemes are limited. Notwith-
standing, incorporating ML models in therapeutic drug monitoring programs seems definitely promising and the 
current work provides a basis for validating the model in clinical practice.

Keywords: Critically ill, Intensive care, Machine learning, Piperacillin/tazobactam, Population pharmacokinetics, 
Therapeutic drug monitoring, Uncertainty quantification
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estimates for the predicted concentrations using the final 
ML models. At last, we also propose two uncertainty 
quantification performance metrics, the Absolute Dis-
tribution Coverage Error (ADCE) and the DCE (Distri-
bution Coverage Error), usable in model selection and 
uncertainty quantification performance evaluation.

Related work
Drug concentration prediction
Earlier works already explored the idea of using various 
ML models, such as support vector machines, gradient 
boosting trees, XGBoost, and neural networks, to predict 
drug concentrations for tacrolimus, remifentanil, gen-
tamicin, risperidone, teicoplanin, phenytoin, and warfa-
rin [22–29]. A recent study explained and validated the 
predictions of teicoplanin trough concentrations using 
Shapley values while combining the best models into a 
single ensemble [28, 30]. Another study used XGBoost to 
act as a classifier, trained on virtual patients, to select the 
best PopPK model to aid TDM-guided dosing [31]. How-
ever, none explored the prediction of piperacillin plasma 
concentrations directly using machine learning models 
nor did they include uncertainty quantification for the 
concentration prediction while comparing to a published 
PopPK model on an internal and external evaluation 
dataset.

Regression uncertainty quantification
In regression problems the observable targets y are the-
orized to consist of a ground truth function f(x), given 
the input features x, and additive noise ǫ . When predict-
ing the target variable, we try to find an estimator such 
that ŷ = f̂ (x) closely resembles the target y. In contrast, 
in uncertainty quantification, the goal is to correctly 
approximate and describe the predictive distribution P

Ŷ
 

of the outputs ŷ such that it correctly encompasses all 
sources of uncertainty [32].

Two metrics are important for uncertainty quantifi-
cation evaluation: calibration and sharpness. The cali-
bration quantifies how well the predictive distribution 
captures the ground truth uncertainty of the predic-
tions by evaluating and comparing every quantile of the 
predictive distribution. The sharpness indicates the size 
of this predictive distribution, which is in this case the 
standard deviation σ . The sharpness and calibration are 
both required to effectively evaluate the predictive distri-
bution, and a trade-off exists between these two metrics 
[33]. The goal is to have a predictive distribution that is 
as small as possible but still has perfect calibration. Zhao 
et  al. discussed various theoretical requirements for 
regression distribution-based uncertainty quantification 
such as different kinds of calibration and sharpness [33].

Various solutions for distribution-based uncertainty 
quantification for regression problems have already been 
proposed such as mean-variance methods and Bayesian-
based models. Mean-variance methods output a mean 
and variance of the Gaussian distribution by optimizing 
the negative log-likelihood loss. More advanced solutions 
use Bayesian frameworks to output a Gaussian distribu-
tion by e.g. directly optimizing the Kullback-Leibner 
divergence, such as Bayesian Neural Networks. These 
methods are often only bound to neural networks or spe-
cific models and therefore not model-agnostic [32].

Methods
Data
Ghent university hospital patients
Data from patients, included in a prospective observa-
tional study conducted between March 2016 and April 
2018 in the surgical ICU of the Department of Critical 
Care of Ghent University Hospital (GUH, Ghent, Bel-
gium), a tertiary university hospital with 52 ICU beds, 
were used. Ethical approval was obtained from the Ghent 
University Hospital Ethics Committee (registration num-
ber 2016/0264). Patient agreement was obtained via opt-
ing out before participation. Patients admitted to the 
surgical ICU and receiving both targeted and empirical 
piperacillin/tazobactam (4g/0.5 g powder for solution for 
infusion; Fresenius Kabi n.v., Schelle, Belgium) for at least 
24 h in continuous infusion were screened for eligibil-
ity. Patients younger than 18 years and patients receiving 
extracorporeal membrane oxygenation or renal replace-
ment therapy (RRT) during antimicrobial therapy were 
excluded.

Piperacillin antimicrobial concentrations and addi-
tional data, such as biochemistry, demographic data, the 
Sequential Organ Failure Assessment score (SOFA) on 
the day of sampling [34], and the Acute Physiology and 
Chronic Health Evaluation (APACHE II) score on admis-
sion, were prospectively collected. Biochemical variables 
such as serum creatinine, albumin, platelets, lactate, 
white blood cells, and bilirubin were determined from 
the same drawn blood sample as the antibiotic plasma 
concentration. Creatinine clearance ( CLcr ) was deter-
mined by measuring urinary creatinine concentrations 
from an 8-h urinary collection (mCLcr ). If no m CLcr was 
available, estimated glomerular filtration rate (eGFR) as 
calculated by the CKD-EPI equation was used [35]. TZP 
dosing in GUH was as follows: loading dose of 4/0.5 g/30 
min immediately followed by a continuous TZP infusion 
depending on m CLcr (eGFR): m CLcr (eGFR) < 15 mL/
min: 8/1 g/24 h, m CLcr (eGFR) 15–29 mL/min: 12/1.5 
g/24 h and for a m CLcr (eGFR) ≥ 30 mL/min 16/2g/24h. 
Measured piperacillin concentrations were not disclosed 
to the treating physicians.
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Remnants of the blood gas syringes (RAPIDLyte; Sie-
mens Healthcare Diagnostics, Deer- field, IL) taken as 
part of the routine arterial or venous blood sample every 
morning at 6 a.m. were collected as steady-state study 
material. Samples were centrifuged and plasma was fro-
zen at -80C awaiting batch analysis. Total plasma con-
centrations of TZP were analyzed by the Laboratory of 
Clinical Toxicology and Drugs analysis of the Depart-
ment of Laboratory Medicine of GUH using a validated 
fast ultra-performance liquid chromatographic method 
with tandem mass spectrometric detection (UPLC-MS/
MS) [36].

The UPLC-MS/MS system consisted of a Waters 
Acquity UPLC instrument coupled to a TQD triple-
quadrupole mass spectrometer (Waters Corp., Milford, 
MA). Separations were performed on an Acquity UPLC 
BEH C18 column (100 mm × 2.1 mm, 1.7 µ m parti-
cle size ) equipped with a 0.2 µ m precolumn filter unit 
and a guard column (Waters Corp., Milford, MA). Ana-
lytes were measured in the multiple reaction monitor-
ing (MRM) mode. The flow rate was set at 0.4 mL/min. 
The column and autosampler tray temperature were set 
at 50 ◦ C and 4 ◦ C respectively. 40 µ L of the extract was 
injected into the column. The MS/MS instrument was 
operated with a capillary voltage of 1.00 kV, a source 
temperature of 140 ◦ C, and desolvation gas (nitrogen) at 
400 ◦ C with a flow of 800 L/h. Analytes were measured 
in the electrospray positive (ESI+) mode. The deuterated 
standard D5- piperacillin from Toronto Research Chemi-
cals (Ontario, Canada) was used as an internal standard. 
Data were acquired using Masslynx 4.1 software and pro-
cessed using Quanlynx 4.1 software (Waters Corp., Mil-
ford, MA).

University medical centre of Groningen patients
For external evaluation a dataset of ICU patients receiv-
ing continuous infusion TZP enrolled by Aardema et  al 
[37] from the University Medical Centre of Groningen 
(UMCG) was used. Only UMCG patients fulfilling all 
inclusion criteria and none of our exclusion criteria were 
used for evaluation. Some records were duplicates except 
for the concentration. As these concentrations were close 
to the other record (±5 mg/L), only the first occurrence 
was kept [38]. In UMCG, a 24-h urine collection was 
used to measure CLcr . If no such collection was avail-
able, the MDRD [39] formula was used to estimate the 
glomerular filtration rate (eGFR). TZP dosing in UMCG 
was as follows: loading dose of 4/0.5 g/30 min immedi-
ately followed by a continuous TZP infusion depending 
on m CLcr or eGFR if no urine collection was available: 
m CLcr (eGFR) < 20 mL/min: 8/1g/24h, m CLcr (eGFR) 
20–39 mL/min: 8/1g/24h for the first 24 h, followed by 

12/1.5 g/24 h afterward and for a m CLcr (eGFR) ≥ 40 mL/
min 12/1.5 g/24 h.

Data cleaning
Missing values of variables with less than 5% missing 
were either interpolated or replaced by the previous or 
next value, depending on data and expert knowledge. 
Three variables had more than 5% missing values and 
were handled differently: urine creatinine level, body 
temperature, and m CLcr . Urine creatinine and tempera-
ture missing values were replaced with their mean values 
for the Gaussian process (GP) and multilayer perceptron 
(MLP) models for numerical stability and with -999 for 
the Gradient Boosting Tree (GBT) models to indicate 
missings. Missing m CLcr values were approximated 
using the adjusted Cockcroft-Gault [40] and MDRD 
[39] formulas. An optimized weighted sum of these for-
mulas was determined in the cross-validation phase 
to be (CockcroftGault + 2 ·MDRD)/3 . The CKD-EPI 
[35] equation was evaluated but of no additional value. 
Records still containing missing values after this step 
were deleted. The number of imputed values per variable 
can be found in Table 1.

Sequential records of patients were linked with a vari-
able that described the previous concentration of the 
patient. A default previous concentration of 0 mg/L was 
used in every first record of a patient to indicate that no 
known previous concentration was available. A second 
feature was also included to depict the time to the previ-
ous concentration.

Study population
After excluding 13 patients with 21 concentrations dur-
ing data cleaning, 282 patients with 752 piperacillin 

Table 1 The number of missing values for all considered 
features in both datasets with size N

Features that are not shown in the table contained no missing values

Feature GUH (N = 752) UMCG (N = 46)

Albumin (g/dL) 13 7

Bilirubine (mg/dL) 19 20

Creatinin clearance (mL/min) 100 0

Height (cm) 6 0

Hemoglobin (g/dL) 7 36

Lactate (mmol/L) 5 34

Platelets (/mm3) 7 20

Serum creatinine (mg/dL) 14 0

SOFA 3 21

Temperature ( ◦C) 107 N/A

Urine creatinine (mg/dL) 39 12

White blood cells (/mm3) 8 36
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concentrations were included in the GUH dataset. 
Patients were split on their patient id into a training set, 
containing 240 patients and 601 concentrations, and two 
test sets for model evaluation: a a priori test set for evalu-
ating a clinical scenario without a previous piperacillin 
plasma concentration, and a a posteriori test set to mimic 
the situation where one or more piperacillin plasma con-
centrations were available. 25 percent of patients with at 
least two records were used as the test set (same patients 
for both test sets) for the GUH evaluation. This resulted 
in a a priori test set, containing 42 patients and 151 con-
centrations, and a a posteriori test set with 42 patients 
and 109 concentrations.

After the exclusion of samples drawn within the first 24 
h of TZP therapy and data cleaning, the UMCG dataset 

consists of 15 patients with 46 concentrations and is used 
for external evaluation. The UMCG dataset is also split 
into a a priori (15 patients, 46 concentrations) and a pos-
teriori test set (12 patients, 31 concentrations). Patient 
demographics and clinical characteristics for both the 
GUH and UMCG datasets are shown in Table 2.

All statistical analyses were performed using Python 
(version 3.8.5) and NumPy (version 1.19.1). Continu-
ous variables are presented as median with interquar-
tile range (IQR). Categorical variables are presented as 
counts and percentages (%). For continuous data with 
a normal distribution, the independent-samples t-test 
was used to compare means (p-value). In the case of a 
non-normal distribution, the Wilcoxon rank-sum test 
was used to compare distributions between groups. For 

Table 2 Descriptive statistics for the GUH and UMCG dataset

The timing of the lab results is from the first piperacillin concentration available for analysis. n is the amount of samples included (patients for demographics, 
admission category, and TZP treatment and lab samples for lab results

Variable GUH (n = 285) UMCG (n = 15) p-value

Demographics

Sex (male) 183 (64.9%) 13 (87.0%) 0.718

Age, median (IQR) (year) 64 (53–74) 60 (54–66) 0.133

Height, median (IQR) (cm) 170 (165–178) 175 (172–178) 0.101

Weight, median (IQR) (kg) 75.0 (64.2–85.0) 77.0 (70.0–90.0) 0.138

APACHE II score upon admission median (IQR) 23.0 (3.0–29.0) NA NA

APACHE IV score upon admission median (IQR) NA 74.0 (65–87) NA

SOFA score on the day of sampling median (IQR) 5 (3–8) 12 (9–14) < 0.001

ICU mortality (%) 33 (11.7%) 4 (26.7%) 0.329

Admission category (%)

Medical 118 (41.8%) 4 (26.7%) 0.599

Surgical 135 (47.9%) 8 (53.3%) 0.883

Trauma 29 (10.3%) 2 (13.3%) 0.662

TZP treatment

Duration of TZP therapy, median (IQR) (days) 3 (1–5) 3 (2–6) 0.373

Piperacillin concentration, median (IQR) (mg/L) 81.0 (54.4–121.4) 50.3 (36.5–80.9) 0.260

No. of blood samples per patient, median (IQR) 2 (1–3) 4 (1–5) 0.350

Timing of blood sample relative to the start of treatment, median 
(IQR) (hours)

63 (35–115) 30 (12–48) <0.001

Time to the previous concentration median (IQR) (hours) 24 (24–48) 24 (24–24) 0.023

Variable GUH (n = 752) UMCG (n = 46) p-value

Lab results

Serum creatinine, median (IQR) (mg/dL) 0.69 (0.51–1.04) 0.76 (0.52–1.33) 0.255

Measured creatinine clearance, median (IQR) (mL/min) 107.5 (65.5–143.7) 96.9 (40.5–127.9) 0.125

Albumin, median (IQR) (g/L) 23.0 (20.0–26.0) 22.5 (19.0–26.0) 0.257

Platelets, median (IQR) ( 109/L) 281.0 (174.0–414.0) 160.0 (123.5–199.2) 0.729

Lactate, median (IQR) (mg/dL) 10.9 (8.5–14.3) 12.0 (9.0–18.0) 0.561

White blood cells, median (IQR) ( 109/L) 12.6 (9.9–16.9) 11.7 (8.5–19.5) 0.689

Bilirubin, median (IQR) (mg/dL) 0.60 (0.40–1.10) 0.99 (0.36–2.70) 0.468

Fluid balance in the previous 24 h median (IQR) (ml/24 h) 421.9 (− 359.7 to 1399.3) 816.5 (− 210.0 to 2328.2) < 0.001
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categorical data, Pearson’s χ2 or Fisher’s Exact Test were 
used.

Machine learning models
Models
Three models were selected. Two models were chosen as 
interpretable models capable of uncertainty quantifica-
tion to give the clinician insights into the prediction and 
provide model output confidence: The Quantile regres-
sion Gradient Boosting Trees (GBT) (open-source Cat-
Boost library, version 0.25) and Gaussian processes (GP) 
(GPy library, version 1.9.9). The third model is a Multi-
layer Perceptron model (MLP) or fully-connected feed-
forward neural network (Tensorflow library, Version 
2.3.0). The GUH dataset is considered a small dataset, 
therefore, deep learning approaches are not suitable for 
this problem. However, to prove this statement, the MLP 
is included in this study. The MLP model will not be used 
for uncertainty quantification due to the limited dataset. 
Therefore, more advanced uncertainty quantifying meth-
ods, such as Bayesian Neural Networks, are not consid-
ered in this study.

For each ML model, two different sub-models were 
trained. The first model predicts a concentration when 
a previous TDM measurement is available and, denoted 
as the prev model, and is used for the a posteriori case. 
The second model denoted as the new model, predicts a 
concentration when there is no prior TDM measurement 
available, i.e. a previous concentration of 0, and is used 
for the a priori case.

For the GP models, the new model was built using 
the Radial Basis Function kernel, while the prev model 
used the Multi-Layer Perceptron kernel to represent the 
prior knowledge. Each final GBT model is an ensemble 
consisting of three sub-models: one model dedicated to 
predicting the concentration, and two models to pre-
dict the upper and lower prediction quantile for uncer-
tainty quantification, further referred to as the Quantile 
Ensemble.

Model development strategy
Model development was performed on the GUH train-
ing set, using 10-fold cross-validation (CV), where the 
patients are split using their patient id and the number 
of measurements per patient was used to stratify the 
split. The CV was used to select the features, determine 
parameters, and compare different techniques. Predic-
tion errors were evaluated using the mean error (ME), 
the mean absolute error (MAE), the root mean square 
error (RMSE), the coefficient of determination ( R2 ), 
median absolute percentage error (MdAPE), and median 
percentage error (MdPE).

For model development, the RMSE was the preferred 
metric to determine the best model and feature selec-
tion algorithms as it quantifies the average error and 
quadratically penalizes large errors. Furthermore, to 
determine the best hyperparameters for the Quantile 
models in the Quantile Ensemble for uncertainty quan-
tification, the proposed Absolute Distribution Coverage 
Error metric was the preferred metric, minimizing the 
metric.

Feature selection
The features considered for model building were: age 
(yrs), height (cm), weight (kg), race, sex, SOFA, lactate 
(mmol/L), serum creatinine (mg/dL), urine creatinine 
(mmol/L), creatinine clearance ( CLcr , mL/min), hema-
tocrit (%), platelets (/mm3), white blood cells (/mm3), 
red blood cells (/mm3), bilirubin (mg/dL), hemo-
globin (g/dL), albumin (g/dL), fluid balance (mL/24h), 
piperacillin/tazobactam (TZP) dose per hour (mg/h), 
temperature ( ◦C), AKI stage (cf. KDIGO definition), 
cumulative administered dose (mg), previous pipera-
cillin concentration (mg/L), reason for ICU admission 
(i.e. medical, surgical, trauma admission, neurological 
trauma), dobutamine usage (yes/no), vasopressor usage 
(yes/no), epinephrine usage (yes/no), dopamine usage 
(yes/no), norepinephrine usage (yes/no), milrinone 
usage (yes/no), and phenylephrine (yes/no). These were 
all available features, collected on the plausibility of 
prediction impact as judged by clinicians and permis-
sion of collection. Adding features to include changes 
over time did not result in better performances and 
were therefore not included. The biochemistry features 
are determined from the same moment of drawing the 
piperacillin concentration. Together with the other 
variables, this creates a feature set to predict the con-
centration at the moment of drawing the blood sam-
ple when the biochemistry variables become available. 
Hence, our model predicts the antimicrobial concen-
tration at the time of drawing the sample using readily 
available data, without the need of expensive laboratory 
equipment or the large turnaround time required for 
the concentration determination.

The feature selection for the GBT ensemble and the 
MLP model used a novel method called PowerShap, a 
feature selection algorithm that uses statistical hypothe-
sis testing and power calculations on Shapley values [41]. 
The GP model is not supported by the PowerShap library 
for feature selection and therefore forward feature selec-
tion was used, iteratively adding features providing the 
best results. Feature selection was performed before opti-
mizing the hyperparameters and re-executed whenever 
new techniques, models, or loss functions were tried.
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Uncertainty quantification
Providing uncertainty quantification for any prediction is 
important, especially for high-risk environments such as 
the ICU [42]. Therefore, for this study, specific attention 
was given to providing uncertainty quantification. The goal 
of the uncertainty quantification in this study is to provide 
a complete predictive distribution together with the regres-
sion output to enable calculating the likelihood that the 
true drug concentration will be between specific bounds. 
This is especially useful for evaluating whether the pre-
dicted concentration attains a therapeutic drug concentra-
tion window.

For the current application, the predictive distribution 
is assumed to be Gaussian, which is characterized by two 
parameters: the mean µ , corresponding with the regres-
sion output, and the standard deviation σ . The Gaussian 
assumption is inherently incorporated into the Gaussian 
process model. For the other method, the proposed Quan-
tile Ensemble, the assumption is used to provide a predic-
tive distribution.

Gaussian process
The output of a Gaussian process is a Gaussian Distribu-
tion with estimated mean µ̃ and estimated standard devi-
ation σ̃ and therefore requires no further calculations. 
Furthermore, the Gaussian process is a homoscedastic 
Bayesian-based uncertainty quantification method, where 
the standard deviation is approximately equal for all sam-
ples providing a global uncertainty prediction.

Quantile ensemble model
There are three models in the Quantile Ensemble Model. 
One for the regression output or µ̃ and two for estimat-
ing an upper ỹU and lower quantile ỹL of the predictive 
distribution.

First, a specific coverage p is defined, which is a hyperpa-
rameter that specifies the upper and lower quantile:

Then, given the quantile function of the Gaussian distri-
bution for a coverage p:

With µ and σ parameters of the Gaussian distribution. It 
is then possible to derive σ̃ using the predicted upper ỹU 
and lower ỹL quantiles:

(1)Qup =0.5+ p

2

(2)Qlow =0.5− p

2

(3)Q(p;µ, σ) = µ+ σ
√
2erf −1(2p− 1)

Distribution inferences
Given the estimated distribution parameters µ̃ and σ̃ and 
the Gaussian distribution quantile function, any predic-
tion interval can now be estimated for a given coverage p:

Additionally, the estimated coverage percentage p̃ 
between any upper yU and lower bound yL can then be 
calculated as follows:

By predicting the quantiles and recalculating the predic-
tive distribution for each individual sample, the Quantile 
Ensemble becomes a heteroscedastic method. In con-
trast to a homoscedastic model, a heteroscedastic model 
provides standard deviations that can differ for each 
sample, thereby providing an individualized uncertainty 
prediction. Do note that the provided Quantile Ensem-
ble method can be applied to any model optimizing a 
quantile loss function, and is not limited to the CatBoost 
model. Although only two models are required to esti-
mate the distribution, using three models provides higher 
calibration performance. When using two models, one 
model predicts the mean and the other predicts a single 
quantile, which can be converted into the standard devia-
tion using the same method.

Uncertainty quantification evaluation
To ensure the uncertainty quantification is accurate, 
the calibration and sharpness of the predictive distribu-
tion should be evaluated. To measure the calibration, 
the (Absolute) Distribution Coverage Error ((A)DCE) is 
proposed for heuristic calibration calculation in distri-
butions, based on the Prediction Interval Coverage Per-
centage [32] that calculates the empirical coverage of a 
prediction interval with upper and lower bounds yU and 
yL :

Where y is the target value vector, I the indicator func-
tion, and N the amount of included data points.

We then define the coverage function C, that calculates 
the empirical coverage of estimated centered prediction 

(4)σ̃ = ỹU − ỹL√
2 · erf −1(p)

(5)[ỹLp , ỹUp ] = Q
1− p

2
, σ̃ , µ̃ ,Q

1+ p

2
, σ̃ , µ̃

(6)p̃ = erf

(

yU − µ̃

σ̃
√
2

)

− erf

(

yL − µ̃

σ̃
√
2

)

(7)PICP(y, yL, yU ) =
1

N

N
∑

i=1

I{yLi ≤ yi ≤ yUi}
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intervals extracted from the predictive distribution with 
estimated parameters σ̃ and µ̃ for a specified coverage p:

A sampling rate S is defined for the heuristic calculation 
of the calibration, corresponding to the step size of the 
percentages, which is set to 1000 in this work. To bound 
the absolute values of DCE and ADCE to [0,  1] and 
thereby, both are multiplied by 2:

The ADCE quantifies the average calibration of the 
complete predictive distribution (for a more elaborate 
explanation of average calibration we refer to [33]). The 
DCE shows any calibration biases, either consistently 
underestimating (positive) or overestimating its cover-
age (negative). However, do note that the DCE can be 0 
while ADCE can be 1, but not vice versa. Therefore, it is 
advised to always provide both.

The calibration can then be plotted in calibration plots, 
plotting the coverage C for each p, for further visual 
inspection of the calibration performance.

Hyperparameters
Gradient boosting trees (GBT)
Four hyperparameters of the GBT ensemble were opti-
mized using cross-validation: tree depth, leaf regu-
larization, border count, and the quantile coverage p. 
The final hyperparameters of all GBT new sub-mod-
els were chosen to be 4, 1, 250, and 0.80, respectively. 
For the GBT prev model, they were 3, 4, 50, and 0.82, 
respectively. Therefore, the loss function of the new 
and prev sub-model responsible for the regression out-
put was Quantile : alpha = 0.5 . For the new upper 
and lower quantile models the loss functions were 
Quantile : alpha = 0.90 and Quantile : alpha = 0.10 
respectively, while they were Quantile : alpha = 0.91 
and Quantile : alpha = 0.09 for the prev upper and lower 
quantile models.

Gaussian processes (GP)
For optimizing the GP, at least one feature is required to 
determine the kernel but a kernel is required to perform 
feature selection. Since the feature with the largest cor-
relation to the concentration has a high chance of being 

(8)

C(y, p, σ̃ , µ̃) = PICP

(

y,Q

(

1− p

2
, σ̃ , µ̃

)

,Q

(

1+ p

2
, σ̃ , µ̃

))

(9)DCE(y, θ̃ ) = 2

S

S
∑

i=0

(

C(y, i/S, σ̃ , µ̃)− i

S

)

(10)ADCE(y, θ̃ ) = 2

S

S
∑

i=0

∣

∣

∣

∣

C(y, i/S, σ̃ , µ̃)− i

S

∣

∣

∣

∣

included in the final feature set and can thus be used for 
kernel selection. The feature with the largest Pearson corre-
lation to the concentration, CLcr , was chosen to determine 
the most adequate kernel. The GP prev model used the fol-
lowing features (ordered in descending importance): pre-
vious concentration (MLP kernel weight variance = 0.085; 
higher weight indicates larger importance), creatinine 
clearance (0.080), serum creatinin (0.056), and fluid balance 
(0.0078). The GP new model used the following features: 
creatinine clearance (RBF kernel lengthscale = 0.95; lower 
weight indicates larger importance), serum creatinin (1.73), 
albumin (13.45), and bilirubin (152.7).

Multi‑layer perceptron (MLP)
The developed neural network is a neural network with 3 
layers, each with a width of 32 nodes and using the ReLu 
activation function. The models were optimized using the 
Tensorflow Adam optimizer with a learning rate of 0.0005, 
batch size of 32, and 75 epochs.

Population PK model
A two-compartmental piperacillin PopPK model with par-
allel linear/Michaelis-Menten elimination was used to pre-
dict antimicrobial concentrations for model comparison 
[43]. In this PopPK model, the m CLcr (mL/min), normal-
ized to 100mL/min, and the body weight, normalized to 
70kg, were included for determining the clearance using a 
power function with 0.75 as an exponent. The volume of 
distribution had an exponent of 1. This model is described 
as follows:

The median and 95% confidence intervals for model 
parameters drug clearance (CL), volume of the central 
compartment (V), volume of the peripheral compart-
ment ( Vp ), and intercompartmental clearance (Q) were 9 
(7.69–11) L/h, 6.18 (4.9–11.2) L, 11.17 (7.26–12) L, and 
15.61 (12.66–23.8) L/h. The Michaelis–Menten constant 
( Km ) and the maximum elimination rate for Michaelis–
Menten elimination ( Vmax ) were estimated without pop-
ulation variability in the model to avoid overfitting. The 

(11)CL = TVCL

(

CLCR

100

)(

WEIGHT

70

)0.75

(12)V = TVV

(

WEIGHT

70

)

(13)Vp = TVVp

(

WEIGHT

70

)

(14)Q = TVQ

(

WEIGHT

70

)0.75
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population estimates for Km and Vmax were 37.09 mg/L 
and 353.57 mg/h, respectively.

NONMEM®(version 7.5; GloboMax LCC, Hanover, 
MD, CA, USA) was used to predict antimicrobial con-
centrations with the published PopPK model. Predic-
tions made with the PopPK model were deterministic, i.e. 
without residual uncertainty.

Concentration prediction evaluation
For a priori evaluation, a priori PopPK predictions were 
generated with a parameter distribution equal to the 
population parameter distribution of the PopPK model 
(i.e. Bayesian prior) and compared to the new ML mod-
els. For a posteriori evaluation, individual PK parameter 
estimates, as opposed to population PK parameter esti-
mates, can be used to generate a posteriori predictions 
(the Bayesian posterior), and compared to the prev ML 
models [44–46]. All used ML models provide determin-
istic predictions.

PopPK and ML predictions for the GUH database were 
also converted into different categories to assess target 
attainment, required in clinical practice. The first cat-
egory, subtherapeutic, contains unbound concentrations 
below the target attainment value of four times the mini-
mum inhibitory concentration (MIC) of Pseudomonas 
aeruginosa of 16 mg/L [47]. This breakpoint, the upper 
limit of piperacillin susceptibility, represents a worst-case 
scenario for empirical dosing for when the MIC of the 
pathogen is not yet known. However, this can be changed 
when the MIC of the pathogen is known. The suprath-
erapeutic category is based upon the toxicity risk of TZP, 
set at an unbound concentration of 112 mg/L [48]. The 
therapeutic category lies in between these two catego-
ries. Classification performance was evaluated using the 

precision (i.e. positive predictive value (PPV)), specific-
ity (i.e. selectivity or true negative rate (TNR)), sensitiv-
ity (i.e. recall, hit rate, or true positive rate (TPR)), and 
F1-score metrics.

As only total plasma concentrations were measured, a 
protein binding factor of 30% was considered, resulting in 
a subtherapeutic threshold of 91.43 mg/L and a suprath-
erapeutic threshold of 160 mg/L [49].

Results
Final features
Features were collected on the plausibility of predic-
tion impact as judged by clinicians and by permis-
sion of collection. Adding features to include changes 
over time did not result in better performances and 
were hence not included. Features included in the dif-
ferent ML models after feature selection can be seen 
in Table  3, any features not present in the table were 
not in the final feature set of any model as they did 
not increase the performance. The GP models did not 
use many features as they are highly sensitive to high 
dimensions and therefore prefer small feature sets. 
The features included in every model are the creati-
nine clearance and the serum creatinine and prove 
their already known predictive capabilities. Albumin 
return in four of the five ML models as a feature, indi-
cating it as important for predicting the piperacillin 
plasma concentrations. Weight is seen as an important 
indicator for the volume of distribution in the PopPK 
model. However, no ML model included weight, as 
the addition of weight in the cross-validation phase 
only decreased performance always preferring height 
over weight. As an experiment, when height was not 
available as a feature, the models included weight as 

Table 3 Features used by each model

Feature GBT prev GBT new GP prev GP new MLP PopPK

Albumine (g/dL) X X X X

Bilirubine (mg/dL) X X X

Creatinine clearance (mL/min) X X X X X X

Fluid balance (mL/24 h) X X

Height (cm) X X X

Lactate (mg/dL) X X

Platelets (/mm3) X X X

Red blood cells (/mm3) X X

Previous concentration (mg/L) X X X

Sex X

Hours since start treatment (h) X

Serum creatinine (mg/dL) X X X X X

Weight (kg) X
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a predictor, indicating that the models found height 
more informative than weight in this dataset. In the 
GUH dataset, the weight and the height were normally 
distributed with the same standard deviation and con-
tained only a few outliers. As a result, model predic-
tions for patients with an outlying weight could be less 
optimal.

Visual interpretation of ML models
Visualization of the shapely additive explanation val-
ues (SHAP) [30] for the GBT prev and new model are 
shown in Fig. 1. The SHAP value quantifies the impact of 
a feature on pushing the concentration output from the 
baseline prediction to the actual prediction. The baseline 
is considered the average of all predictions in training 
[30]. Both figures show the CLcr as the most important 

Fig. 1 SHAP visualization for GBT new (top) and GBT prev (bottom) The SHAP values are in mg/L



Page 11 of 17Verhaeghe et al. BMC Medical Informatics and Decision Making          (2022) 22:224  

predictor where a low CLcr results in high piperacillin 
concentrations, in accordance with the literature.

Evaluation
Concentration prediction
The concentration prediction performance on the GUH 
and UMCG datasets is shown in Table 4. The metrics are 
also calculated in the log scale as many large concentra-
tion values might skew the regression results.

Target attainment prediction
A priori and a posteriori performance of the ML models 
and the PopPK model on the GUH database for target 
attainment prediction is summarized in Table 5. This was 
not performed for the UMCG dataset as the number of 
samples was insufficient. As the MLP model was solely 
used to show the limited performance of a deep learn-
ing model, the MLP model was not included for target 
attainment prediction.

Compensation of missing creatinine clearances
The most important feature in both models is the creati-
nine clearance, however, not all ICUs routinely measure 
this covariate and instead use eGFR formulas. To evalu-
ate these cases, all measured CLcr values in the test set are 
replaced using the weighted eGFR formula. The evalua-
tion results of the best models, GBT new and GBT prev, 

on the GUH dataset for this case were (RMSE/MAE/
ME/R2 ) 40.71/27.84/− 7.24/0.41 and 34.51/19.37/− 
5.75/0.58, respectively. As expected, the performance is 
worse. However, the models are still usable and therefore 
the weighted formula is an alternative for cases where the 
creatinine clearance cannot be measured.

Uncertainty quantification
In Table 6, the calibration and sharpness results of both 
the GBT and the GP model are shown. Figures 2 and 3 
shows the visualization of the calibrations for the GUH 
and the UMCG dataset respectively.

Patient case study
One patient will be discussed in this section to illustrate 
what information the final ML models can provide to the 
clinician when predicting the plasma concentration in 
clinical practice. The discussed patient is a patient with 
a previously measured concentration and is therefore 
handled by the GBT prev model and a posteriori PopPK 
model for comparison. The features at the time of meas-
uring the discussed observed plasma concentration of 
this patient are shown in Table 7 .

The patient suffered a wound infection in the lower legs 
with amputation of the right leg. The observed plasma 
concentration was 129.60 mg/L and the patient had a 
previous concentration of 173.40 mg/L. The GBT prev 

Table 4 Evaluation performance of all considered ML and PopPK models

All RMSE, MAE, and ME values are in mg/L. The values in parenthesises are in log scale. Bold indicates the best model for that metric and case

Model RMSE MAE ME R2 MdAPE MdPE

GUH evaluation: a priori

GBT new 34.27 (0.38) 21.55 (0.25) − 4.09 (0.00) 0.58 (0.57) 17.29% (3.83%) 0.06% (0.01%)

GP new 37.41 (0.43) 23.54 (0.28) 2.04 (0.07) 0.50 (0.46) 21.39% (4.79%) − 3.83% (− 0.84%)

MLP 38.56 (0.47) 27.35 (0.34) 2.58 (0.05) 0.47 (0.36) 23.09% (5.29%) − 5.34% (− 1.26%)

PopPK 57.97 (0.64) 39.67 (0.54) − 30.27 (− 0.45) − 0.19 (− 0.21) 40.79% (11.60%) 38.33% (11.41%)

GUH evaluation: a posteriori

GBT prev 32.93 (0.27) 18.22 (0.19) − 6.55 (− 0.02)  0.62 (0.73) 12.75% (3.09%) 1.77% (0.43%)

GP prev 34.03 (0.28) 19.41 (0.21) − 3.83 (− 0.01) 0.59 (0.71) 16.48% (3.79%) − 3.76% (− 0.92%)

MLP 37.20 (0.36) 23.64 (0.26) − 4.87 (− 0.03) 0.51 (0.51) 17.06% (4.14%) 0.73% (0.17%)

PopPK 49.58 (0.43) 31.28 (0.32) 4.91 (0.03) 0.14 (0.32) 26.09% (6.69%) − 1.85% (− 0.43%)

UMCG evaluation: a priori

GBT new 43.92 (0.78) 38.67 (0.62) 30.67 (0.58)  0.36 (− 0.12) 68.38% (12.89%) − 68.38% (− 12.89%)

GP new 64.99 (0.89) 55.31 (0.74) 50.90 (0.72) − 0.39 (− 0.45) 84.88% (15.33%) − 84.88% (− 15.33%)

MLP 62.28 (0.85) 51.47 (0.71) 38.52 (0.63) − 0.28 (− 0.33) 83.09% (14.97%) − 83.09% (− 14.97%)

PopPK 50.46 (0.67) 31.50 (0.55) − 23.97 (− 0.30) 0.16 (0.18) 39.84% (12.31%) 33.88 % (9.85%)

UMCG evaluation: a posteriori

GBT prev 28.12 (0.57) 21.11(0.40) 15.01 (0.37) 0.68 (0.25) 37.20% (8.46%) − 37.20% (− 8.46%)

GP prev 31.58 (0.57) 22.73 (0.39) 18.05 (0.35) 0.60 (0.26) 25.15% (6.90%) − 25.15% (− 6.9%)

MLP 30.35 (0.64) 26.55 (0.50) 22.45 (0.47) 0.63 (0.06) 54.16% (10.48 %) − 54.16% (− 10.48%)

PopPK 25.89 (0.62) 19.95 (0.45) 2.15 (− 0.00) 0.73 (0.13) 26.69% (7.31%) 3.31% (0.87%)
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model predicted a piperacillin plasma concentration of 
123.59 mg/L with an estimated standard deviation of 
27.40 mg/L while the a posteriori PopPK model predicted 
161.0 mg/L. The output distribution of the ML model is 
visualized in Fig. 4 and the estimated PopPK parameters 
are shown in Table 8. With this information, the patient 
was determined by the ML model to be in the therapeutic 

dosing range with 76.1% certainty, in the subtherapeutic 
range with 13.4% certainty, and 10.5% certainty for the 
supratherapeutic range. The influence of each feature is 
shown in Fig. 5 using the SHAP-values. Both the dose per 
hour and the height are not visible in the SHAP plots as 
their SHAP values are too small to visualize. Here we can 
see that the previous plasma concentration has the high-
est impact on the output due to its high value of 173.40 

Table 5 GUH a priori classification performance of the ML and PopPK models

Subtherapeutic (Sub.): < 91.43 mg/L, Therapeutic (Ther.): ≥91.43 mg/L and < 160 mg/L, Supratherapeutic (Sup.): ≥160 mg/L. Support indicates the number of samples 
in that range. Bold indicates the best model for that metric and case

Model Range Precision Specificity Sensitivity F1-score Support

A priori

GBT new Sub. 0.88 0.88 0.89 0.88 99

Ther. 0.62 0.58 0.69 0.65 35

Sup. 0.67 0.77 0.47 0.55 17

GP new Sub. 0.88 0.88 0.85 0.87 99

Ther. 0.53 0.47 0.60 0.56 35

Sup. 0.56 0.58 0.53 0.55 17

PopPK Sub. 0.71 0.60 0.98 0.82 99

Ther. 0.50 0.89 0.11 0.19 35

Sup. 0.83 0.94 0.29 0.43 17

A posteriori

GBT prev Sub. 0.93 0.93 0.92 0.93 76

Ther. 0.63 0.54 0.79 0.70 24

Sup. 0.75 0.89 0.33 0.46 9

GP prev Sub. 0.92 0.92 0.92 0.92 76

Ther. 0.59 0.53 0.67 0.63 24

Sup. 0.50 0.67 0.33 0.40 9

PopPK Sub. 0.84 0.86 0.75 0.79 76

Ther. 0.35 0.15 0.46 0.40 24

Sup. 0.50 0.44  0.56 0.53 9

Table 6 Uncertainty quantification performance of the GBT 
models and the GP models

Bold indicates the best model for that metric and case

Model ADCE DCE Sharpness (std) (mg/L)

GUH evaluation: a priori

GBT new 0.06 0.01 23.48 (11.41)
GP new 0.29 0.29 41.22 (4.26)

GUH evaluation: a posteriori

GBT prev 0.07 0.04 17.98(8.62)
GP prev 0.28 0.28 28.94 (0.86)

UMCG evaluation: a priori

GBT new 0.62 0.62 25.50 (13.43)
GP new 0.39 − 0.39 42.75 (9.67)

UMCG evaluation: a posteriori

GBT prev 0.31 − 0.31 17.61 (8.02)
GP prev 0.15 0.08 28.22 (0.99)

Fig. 2 Coverage plot of all uncertainty quantification models on the 
GUH dataset The specified coverage is the p to provide the prediction 
intervals. The actual coverage is the measured coverage C 
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mg/L, the low serum creatinine has the second-highest 
impact and reduces the final prediction. All a posteriori 
PopPK model estimates were: CL = 2.36 L/h, V = 6.01 L, 
Q = 15.30 L/h, Vp = 10.90 L, Km = 37.10 mg/L, and Vmax 
= 354.0 mg/h. The PopPK model had a noticeably low 
clearance while the other parameters are average values, 
possibly resulting in overpredicting the concentration.

Discussion
The ML models were developed with piperacillin plasma 
concentrations from critically ill patients receiving a 
continuous TZP infusion. The model with the smallest 
bias and imprecision for the piperacillin concentration 
predictions on the GUH evaluation sets was the GBT 
model. The PopPK model showed better performance 
on the UMCG evaluation a posteriori set in the natural 
scale. In log-scale, the GP prev and the GBT prev models 
performed better, while this is reversed for the a priori 
UMCG test set. All models tend to lose performance for 

higher concentrations (i.e. the supratherapeutic range), 
which can be explained by the lack of data in this range.

Predicted drug concentrations are point estimates 
and reporting the degree of uncertainty is important for 
clinical decision-making [21]. To this end, we proposed 
the Quantile Ensemble method and compared it to a 
Gaussian process model to provide and evaluate reliable 
prediction intervals and predictive distributions. Look-
ing at the results, the GP model’s predictive distribution 
calibration and sharpness are much worse than the GBT 
model. The size of the predictive distribution of the GBT 
models is around 40% smaller than the GP models while 
achieving much better calibration metrics. Furthermore, 
the GP model sharpness standard deviation is low, show-
ing the homoscedastic nature of the model and its nega-
tive impact on uncertainty quantification. The GP model 
has to increase the size of the predictive distribution to 

Fig. 3 Coverage plot of the uncertainty quantification models on 
the UMCG dataset. The specified coverage is the p to provide the 
prediction intervals. The actual coverage is the measured coverage C 

Table 7 Features of the discussed patient

Height (cm) Serum creatinine (mg/dL) Platelets (plt/mm3) Bilirubin (mg/dL) Lactate (mg/dL)

170 0.51 248.0 1.7 9.1

Albumin (g/L) Hours since start treatment (h) CLCr (mL/min) Red blood cells (/mm3)

20 78 72.60 3.75

Table 8 A posteriori PopPK prediction

CL V Q Vp Km Vmax Pred (mg/L)

2.36 6.01 15.30 10.90 37.10 354.0 161.0

Fig. 4 SHAP visualization for a given patient with the GBT prev 
model. The red values increase the output while the blue values 
decrease the output. The mentioned values are piperacillin plasma 
concentrations (mg/L)
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account for the global uncertainty prediction, as a result, 
the individual uncertainty predictions have very large 
bounds and are the same for every patient. Subsequently, 
the GP model uncertainty prediction has no real clini-
cal value as a more individualized prediction is preferred 
for each patient. Looking at the GUH test set ADCE and 
DCE values and the calibration plots, the large posi-
tive GP model DCE values indicate a large conservative 
uncertainty prediction. This behavior proves that the 
size of the distribution can be much smaller on average, 
further supported by the large GP model sharpness and 
the better GBT model performances as mentioned previ-
ously. Furthermore, we can also conclude that the GBT 
model still provides slightly conservative uncertainty 
predictions, given the small positive DCE. These results 
show the added value and the strength of the heterosce-
dastic approach of the Quantile Ensemble method, even 
on a small dataset, and the interpretability and strength 
of the ADCE and DCE metrics, even in model selection.

Together with the regression and uncertainty quan-
tification performance, the preferred model is the GBT 
model. For clinical practice, Struys et  al. defined the 
threshold for drug prediction model acceptance as 30% 
for MdAPE and [−20%, 20%] for MdPE on the natural 
concentration scale [50]. If we were to apply this to all 
models, then only the a priori PopPK model does not 
achieve this minimum requirement. For external evalu-
ation, only the a posteriori PopPK model achieves the 
requirement.

ML models are often perceived as ‘black-box’ mod-
els and, when it comes to ML for the prediction of drug 
concentrations, it may be difficult to understand how 
concentration ‘X’ is predicted, and dose ‘Y’ is suggested. 
End-user interpretability is largely determined by the 
choice of specific ML techniques such as GBT, which 
can provide insight into the model output (‘white-box’). 
As shown, visualization libraries, like SHAP, may further 
increase the understanding of end-users and thereby 
lower the threshold for ML adaptation in clinical practice.

This study is limited by only using plasma concen-
trations from ICU patients receiving continuous infu-
sion TZP. Therefore, the findings of this study cannot 
yet be extrapolated to other antimicrobial drugs or 

alternative modes of infusion instead of continuous 
infusion. Additionally, the used piperacillin concentra-
tions are total plasma concentrations and not tissue 
concentrations. Only the unbound drug fraction at the 
site of infection can exert its antimicrobial effect. Fur-
thermore, tissue perfusion of critically ill patients is 
unpredictable, therapeutic plasma concentrations may 
not necessarily predict therapeutic tissue concentra-
tions, however, attaining sufficiently high plasma con-
centrations is required for achieving therapeutic tissue 
concentrations [5].

Renal replacement therapy (RRT) patients were not 
included. Therefore, there was no training on these 
patients and the performance will likely be worse when 
using the model on RRT patients. As a backup, the 
weighted CG and MDRD formula can be used when the 
patient is on RRT, however, this solution is not validated. 
The main challenge of modeling RRT patients is creating 
a surrogate for the CLcr that can be used as a feature in 
the model.

The dataset for external model evaluation (UMCG 
dataset) is small. Therefore, reliably extrapolating these 
results to other hospitals is not yet possible. As the 
UMCG patients received lower doses and the ML models 
assume the GUH dosing scheme, they, therefore, over-
estimate the external validation concentrations which 
is visible in the high ME. If we compensate for this bias, 
i.e. by subtracting the ME from the predictions, the R2 
(log scale) becomes 0.77 (0.56) and the RMSE becomes 
23.78 (0.44) for the GBT prev model and 0.67 (0.50) and 
31.44 (0.52) for the new model, further proving this is a 
bias introduced due to the different dosing as this model 
then outperforms the PopPK a posteriori model. The 
MdAPE and MdPE of the compensated prev GBT model 
also reduces to 17.92% and −1.55% , making it an accept-
able model by the criteria of Struys et al. [50]. The same 
conclusion can be made for the new GBT model (MdAPE 
= 20.69% , MdPE = 0.39% ). As a result, the model shows 
generalization capabilities if adjusting for a different dos-
ing range is possible, however, these bias-compensated 
models should then be further validated on a new dataset 
before acceptance. As the external dataset was too small, 
this was not possible.

Fig. 5 Prediction output of the first discussed patient with the GBT prev model. The dashed (middle) line is the observed concentration and the 
dotted (outer) lines indicate the therapeutic range boundaries
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The dosing bias also explains the worse uncertainty 
quantification performance on the UMCG dataset, as the 
uncertainty quantification method is not robust against 
this kind of data bias, resulting in a highly negative biased 
calibration (i.e., the predictive distribution is not wide 
enough). If we also calculate the calibration error on the 
compensated results, the ADCE and DCE becomes 0.13 
and 0.11 for the GBT new model, and 0.15 and 0.14 for 
the prev model. Interestingly, the positive DCE on the 
compensated results proves that the predictive distribu-
tion is even slightly too wide for the external evaluation 
proving the generalization capabilities of the Quantile 
Ensemble method.

Further work should try to adjust for different dosing 
regimens. Since the GUH only contained a single dos-
ing scheme, training on different dosings was not pos-
sible. This will also enable dosing suggestions when the 
estimated plasma concentration is not in the therapeutic 
dosing range.

Lastly, the ML models do not currently take time into 
account. Therefore, calculating time above the MIC (%fT 
> MIC), the pharmacokinetic/pharmacodynamic index 
for beta-lactam antimicrobials, is not entirely possible 
with the current ML model. However, the models still do 
indicate the plasma concentration which can be used for 
initial dose optimization. True dose optimization based 
on PK/PD target attainment is an area needing further 
research and can combine the PopPK modeling tech-
niques with the predictive power of ML [5].

Overall, the proposed models demonstrate that this 
can be considered as an alternative strategy to guide 
antibiotic therapy, in addition to PopPK methods, by 
predicting plasma antibiotic concentration while also 
providing uncertainty estimation. As a result, this opens 
the path to incorporating machine learning models in 
decision support systems for more individualized and 
targeted antibiotic therapy. Furthermore, both the uncer-
tainty framework and the ACDE and DCE metrics can 
be applied to many more use cases by following the same 
approach to enable uncertainty quantification and uncer-
tainty evaluation. The presented piperacillin models pre-
sented in the paper are based on retrospective analysis. 
The next step, in future work, is performing a prospec-
tive study together with dose suggestion. The final aim is 
deployment in clinical practice in the intensive care unit 
by integration it with the electronic health records for 
real-time concentration predictions.

Conclusion
Our results show that ML models can consistently 
estimate piperacillin concentrations with high predic-
tive accuracy, especially when no previous concentra-
tion is available, and special emphasis was placed on 

the interpretability of ML model output using SHAP 
visualization. Furthermore, the method of generating 
a predictive distribution using the Quantile Ensemble 
model can be translated into many other regression 
problems using any ML model and optimizing a quan-
tile loss function. Additionally, this work also proposed 
the (Absolute) Distribution Coverage Error, an inter-
pretable uncertainty quantification evaluation metric, 
usable for any distribution-based uncertainty quantifi-
cation method.

As such, incorporating ML models in therapeutic 
drug monitoring programs is definitely promising. Fur-
thermore, these results create a model that is ready 
to be validated in clinical practice, or at least, in the 
locally developed hospital.
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