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Highlights 

 Continuous dosing of piperacillin in critical illness does not yield a high sustained 

target. 

 Large variability in concentrations is seen in continuous dosing of piperacillin. 

 Higher continuous dosing of piperacillin and therapeutic drug monitoring is 

needed. 

ABSTRACT 

Optimal dosing of -lactam antibiotics in critically ill patients is a challenge given the 

unpredictable pharmacokinetic profile of this patient population. Several studies have 

shown intermittent dosing to often yield inadequate drug concentrations. Continuous 

dosing is an attractive alternative from a pharmacodynamic point of view. This study 

evaluated whether, during continuous dosing, piperacillin concentrations reached and 

maintained a pre-defined target in critically ill patients. Adult patients treated with 

piperacillin by continuous dosing in the intensive care unit of a university medical centre 

in The Netherlands were prospectively studied. Total and unbound piperacillin 

concentrations drawn at fixed time points throughout the entire treatment course were 

determined by liquid chromatography–tandem mass spectrometry. A pharmacokinetic 

combined target of a piperacillin concentration ≥80 mg/L, reached within 1 h of starting 

study treatment AND maintained throughout the treatment course, was set. Eighteen 

patients were analysed. The median duration of monitored piperacillin treatment was 60 

h (interquartile range, 33–96 h). Of the 18 patients, 5 (27.8 %) reached the combined 

target; 15 (83.3%) reached and maintained a less strict target of >16 mg/L. In this 

patient cohort, this dosing schedule was insufficient to reach the pre-defined target. 
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Depending on which target is to be met, a larger initial cumulative dose is desirable, 

combined with therapeutic drug monitoring. 
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1. Introduction 

Infections, both community-acquired and nosocomial, are a constant source of morbidity 

and mortality in critically ill patients [1]. -Lactams, with or without a -lactamase 

inhibitor, are the most prescribed group of antibiotics in this setting [2,3]. Guidelines for 

the management of severe sepsis and septic shock advocate the initiation of antibiotics 

as soon as possible, using broad-spectrum antibiotics that penetrate in adequate 

concentrations at the presumed site of infection, ensuring optimal activity against all 

likely pathogens [4]. Choosing appropriate therapy is crucial, as inadequate 

antimicrobial treatment is an important determinant of poor outcome [5]. Optimal dosing 

is equally important because inadequate dosing leads to treatment failure and antibiotic 

resistance [6]. 

 

Piperacillin/tazobactam (TZP) is a widely used -lactam/-lactamase inhibitor 

combination. The effectiveness of piperacillin is determined by the time the unbound 

plasma concentration (fT) is higher than the minimum inhibitory concentration (MIC) of 

the causative bacteria (fT>MIC) [7]. A maximum kill rate is achieved at a free drug 

concentration of ca. 4 MIC [8], with no additional effect above this concentration. There 

is no relevant post-antibiotic effect against Gram-negative micro-organisms [9]. Dosing 

regimens have traditionally been based upon pharmacokinetics as tested in vitro, in 

animal models and in healthy volunteers [6,10–12]. However, in critical illness, several 

complex mechanisms induce an altered pharmacokinetic profile owing to, for example, 

an increase in volume of distribution and an alteration in renal clearance [11]. Numerous 

studies have shown inadequate drug concentrations in critically ill patients treated with 
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-lactams using conventional dosing regimens [13–20]. In particular, augmented renal 

clearance, as might occur during the hyperdynamic stage of sepsis, appears to be a risk 

factor for failing to reach adequate -lactam drug levels [15–19]. 

 

From a pharmacodynamic point of view, continuous infusion is an attractive alternative 

to conventional intermittent dosing of -lactams. This is also supported by clinical 

studies [21–25], The critical care population is likely to gain the most benefit from 

continuous dosing as this group tends to harbour pathogens with higher MICs [26] and 

to have an unpredictable pharmacokinetic profile [11]. Although high-quality randomised 

trials showing a survival benefit are still lacking, in a recent meta-analysis of individual 

patient data from three randomised trials, treatment with -lactam antibiotics by 

continuous infusion was associated with lower mortality compared with intermittent 

dosing in critically ill patients with severe sepsis [24]. Continuous dosing of TZP, 

however, is not yet widely employed in European intensive care units (ICUs) [27]. 

 

This prospective study was conducted to evaluate whether, during continuous dosing, 

piperacillin concentrations reach and maintain a high target concentration in critically ill 

patients, likely to cover most problematic pathogens such as Pseudomonas aeruginosa. 
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2. Materials and methods 

2.1. Study design and study population 

This prospective, observational, single-centre, cohort study was conducted in the 

Department of Critical Care of University Medical Center Groningen (UMCG) 

(Groningen, The Netherlands) between December 2013 and January 2015. The study 

was approved by the Medical Ethics Board of this hospital. Written informed consent 

was obtained from the patient or their next of kin. Patients were eligible for inclusion at 

the start of treatment with TZP for suspected or proven infection. Start of treatment was 

at the discretion of the treating physician. Inclusion criteria were: indication for treatment 

with TZP; admitted to the ICU; age ≥18 years; and able to give informed consent or 

legal representative able to give informed consent. All patients had an indwelling arterial 

line for reasons outside the study protocol. Exclusion criteria were: pregnancy; severe 

anaemia; use of renal replacement therapy; and contra-indications to continuous 

infusion. Patients already started on TZP by intermittent dosing (e.g. on the ward, 

before ICU admission) were included if no more five doses had been given; continuous 

dosing was started directly after a next bolus. 

 

All patients, regardless of kidney function, received a loading dose of 4 g/0.5 g TZP 

(Piperacillin/Tazobactam Fresenius Kabi 4g/0.5g powder for solution for infusion; 

LABESFAL Fresenius Kabi Group, Santiago de Besteiros, Portugal) infused over 20 

min. Continuous dosing was started directly after the loading dose in all patients using a 

syringe pump (Alaris® GH perfusor; CareFusion, Rolle, Switzerland). The first hour of 

starting treatment, including infusion of the loading dose over 20 min directly followed by 
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continuous infusion, was considered the loading phase. The next phase, from 1 h after 

the start of treatment, was referred to as the maintenance phase. The sample drawn at 

1 h after the start of treatment was considered as part of the maintenance phase. The 

dosing schedule for continuous infusion in the maintenance phase was adjusted to renal 

function [assessed by calculation of creatinine clearance (CLCr) over 24-h intervals 

using the equation: Urine creatinine (mmol/L)  Urine volume (mL)/time (min)  Serum 

creatinine (mmol/L) (UCreat  UVol/time  SCreat); or, when parameters not were 

available, estimated using the Modification of Diet in Renal Disease (MDRD) formula for 

estimated glomerular filtration rate]. Renal function was recorded on the day of starting 

treatment with TZP in the context of the study. 

 

Patients with a CLCr > 40 mL/min received a continuous infusion of 12/1.5 g TZP every 

24 h. Patients with a CLCr of 20–40 mL/min received a continuous dose of 8/1 g on Day 

1 and 12/1.5 g from Day 2 onwards. Patients with a CLCr < 20 mL/min received a 

continuous dose of 8/1 g from Day 1. Blood samples were drawn at the start of 

treatment in the context of the study on Day 1 and then at 20 min after the start of 

treatment (directly after the loading dose); subsequent samples were drawn at 40 min 

and at 1, 2, 4, 8, 12 and 24 h after the start of treatment; from Day 2, samples were 

drawn every 12 h for a maximum period of 2 weeks or until treatment with TZP was 

stopped. Samples were centrifuged and were frozen at –20 C, to be processed in 

batch by the Department of Clinical Pharmacy and Pharmacology of UMCG. Patient 

characteristics included demographic and clinical data, assessment of illness severity 
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reflected by the Acute Physiology and Chronic Health Evaluation (APACHE) IV score, 

and laboratory investigations. 

 

2.2. Definition of pharmacokinetic/pharmacodynamic (PK/PD) target 

A ‘strict’ target was chosen based on the notion that for -lactams, a maximum kill rate 

is achieved at a free (unbound) drug concentration of ca. 4 the MIC of a causative 

organism, with no additional effect above this concentration [8,28] and the absence of a 

relevant post-antibiotic effect against Gram-negative organisms [9]. Pseudomonas 

aeruginosa was chosen as a possible causative micro-organism in consideration of a 

‘worst-case scenario’, with an MIC clinical breakpoint of 16 mg/L 

(http://www.eucast.org/clinical_breakpoints/; accessed 21 May 2016), to cover most 

problematic pathogens [29] in an empirical treatment setting. 

 

The pre-defined PK/PD target was thus set at 100%T≥5xMIC (percentage of time of 

dosing interval during which the total concentration exceeds 5 MIC), assuming 20–

30% protein binding [30,31], implying a target of 4  16 = 64 mg/L for unbound and 5  

16 = 80 mg/L for total piperacillin concentration. This target is in line with targets set by 

other research groups considered experts in the field [14,32] as well as reviews 

addressing the pharmacokinetics of -lactams [8,33,34]. This target was to be met from 

1 h after the start of treatment in the context of the study, i.e. during the maintenance 

phase; 1 h after start of the last bolus infusion directly followed by continuous infusion, 

and to be maintained thereafter; we will refer to this as a combined target (target 

reached within 1 h AND maintained thereafter). Reaching a target of >16 mg/L 
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piperacillin in the maintenance phase, i.e. at 1 h after the start of treatment and 

maintained thereafter, 100%T>1xMIC, was also determined. For unbound concentrations, 

a target of ≥4 MIC (64 mg/L) was set. Target attainment was evaluated at sample level 

as well as in individual patients. Whether the target concentration was reached at 1 h 

after start of treatment in the context of the study was also assessed. 

 

2.3. Bioanalysis of piperacillin serum concentrations 

Total serum concentrations of piperacillin were determined at the Laboratory for Clinical 

Toxicology and Drugs Analysis of the Department of Clinical Pharmacy and 

Pharmacology of the UMCG using a validated liquid chromatography–tandem mass 

spectrometry (LC-MS/MS) assay. In brief, all analyses were performed on a triple 

quadrupole LC-MS/MS system (Thermo Scientific, San Jose, CA) with a FinniganTM 

Surveyor® LC pump and a FinniganTM Surveyor® autosampler (Thermo Scientific). The 

mobile phase consisted of an aqueous buffer (containing ammonium acetate 5 g/L, 

acetic acid 35 mL/L and trifluoroacetic acid 2 mL/L water), water and acetonitrile. For 

chromatography, an Atlantis® HILIC Silica analytical column (2.1  100 mm, 3 m) 

(Waters, Etten-Leur, The Netherlands) was used. A simple procedure for protein 

precipitation was used to prepare the samples. For piperacillin, the transition m/z 518.0 

to 114.8 (collision energy 51 eV) was measured with a scan width of 0.5 m/z. The 

calibration curve ranged from 0.5–80 mg/L for piperacillin with a correlation coefficient of 

0.99941. Within-run coefficient of variation (CV) ranged from 2.5–12.9% and between-

run CV ranged from 5.9–12.5%. Bias ranged from –13.4% at the lower limit of 

quantification (LLOQ) level to 10.1% at high level. Unbound piperacillin concentrations 
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were determined in all patients at 1 h and 12 h after the start of treatment. Samples 

were prepared by ultrafiltration of the corresponding serum samples; 10 L of human 

serum was directly transferred into the upper reservoir of the centrifuge filters 

(Nanosep® 30 K Omega centrifugal device; Pall Corp.) and 200 L of the internal 

standard solution was added. The centrifuge filters were closed and the samples were 

briefly homogenised using a vortex mixer. Filtration was done by centrifugation for 10 

min at 12 000  g. 

 

2.4. Statistical analysis 

Target attainment was presented as a percentage; percentage of time at or above 

target per subject and percentage reaching target at group level. Continuous 

parameters were depicted in absolute numbers and either mean ± standard deviation 

(S.D.) or median [interquartile range (IQR)], depending on the distribution. Categorical 

data were depicted as percentage per/in category. Outliers in concentration data were 

investigated per patient in the maintenance phase (i.e. from 1 h after the start of 

treatment and onwards) and were defined as values outside the range of 3  IQR + Q3 

to Q1 – 3  IQR; these were subsequently excluded from the variability analysis and 

were assessed for exclusion in the target attainment analysis. In the boxplot, they were 

investigated per sampling period. To quantify within-patient variability, a CV per patient 

was calculated, defined as a patient’s individual S.D. divided by the mean of this 

patient’s concentrations, as measured during the maintenance phase, multiplied by 

100%. The median, mean and range of these individual CVs were calculated. To 

quantify between-patient variability, we chose to calculate a CV for available 
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concentrations measured at 40 min and at 12, 24, 48 and 60 h after the start of 

treatment in all patients, respectively. A median, mean and range of these five CVs 

were calculated. Statistical analyses were performed using SPSS Statistics for Windows 

v.22 (IBM Corp., Armonk, NY). 

 

3. Results 

3.1. Patient characteristics 

Twenty patients were included in the study; two patients were excluded because of 

breach of protocol. Baseline characteristics and clinical outcome data of this typical ICU 

population are presented in Table 1. Almost all patients required vasopressors and 

mechanical ventilation (94.4% and 88.9%, respectively). The median length of ICU stay 

was 9 days (IQR, 3–13.3 days). Four patients (22.2%) died in the ICU; none of the other 

patients died in hospital. Causes of death in the four patients were decompensated liver 

cirrhosis with subsequent multi-organ failure, severe traumatic brain injury, massive 

intrathoracic bleeding after oesophageal resection complicated by anastomotic leakage, 

and sepsis following chronic osteomyelitis. 

 

3.2. Piperacillin concentration data 

In the 18 patients, 53 samples taken during the loading phase and 175 samples taken 

during the maintenance phase were available for analysis. The median follow-up 

(duration of piperacillin treatment including sampling of piperacillin concentrations) was 

60 h (IQR, 33–96 h). Three outliers were excluded from the analysis. Two outliers were 
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included as they represented very high values at the beginning of the sampling period 

most likely due to interindividual variability or to procedural reasons. 

 

Of 172 samples in the maintenance phase, 73 (42.4 %) were at or above the pre-

defined target concentration of 80 mg/L; 168 (97.7%) were >16 mg/L. In 16 (88.9%) of 

18 patients a concentration of ≥80 mg/L was reached within 1 h after the start of 

treatment. However, in only 5 (27.8%) of 18 analysed patients was a concentration of 

≥80 mg/L maintained (i.e. reached the combined target). Two patients (11.1%) never 

reached a concentration ≥80 mg/L. On patient level, a median of 39.6% of samples per 

patient in the maintenance phase were ≥80 mg/L (IQR, 15.5–100.0 mg/L). 

 

All patients had a concentration >16 mg/L within 1 h after the start of treatment. In 15 

patients (83.3%), a concentration >16 mg/L was maintained. The data are summarised 

in Table 2 and Fig. 1. 

 

Two of the four deceased patients had piperacillin levels ≥80 mg/L at any time during 

treatment, from 1 h after the start of treatment. 

 

All of the patients with a CLCr < 50 mL/min (7 patients) reached a piperacillin 

concentration ≥80 mg/L within 1 h of starting treatment, and 3 (42.9%) of the 7 

maintained a concentration ≥80 mg/L. In patients with a CLCr ≥ 50 mL/min (11 patients), 

9 (81.8%) reached a piperacillin concentration ≥80 mg/L within 1 h of starting treatment 

and 2 (18.2%) of 11 maintained a concentration ≥80 mg/L. Measurement of CLCr by 

Page 13 of 30



 14 

UCreat  UVol/time  SCreat was available in 13 of 18 patients; in 5 patients renal 

function was estimated using the MDRD formula. 

 

Unbound piperacillin concentrations assessed at 1 h after the start of treatment (total, 

18 samples in 18 patients) were ≥64 mg/L (4 MIC) in 16 (88.9%) of 18 samples and 

were >16 mg/L in all 18 samples (100%). Unbound piperacillin concentrations assessed 

at 12 h after the start of treatment (total, 18 samples in 18 patients) were ≥64 mg/L in 7 

(38.9%) of 18 samples and were >16 mg/L in all 18 samples (100%). The median 

fraction unbound was 0.93 [IQR, 0.89–0.97]. 

 

3.3. Variability 

The median within-patient CV was 32.3% (mean, 39.7%), with a range of 10.3–99.2%. 

 

Concentrations analysed at 40 min and at 12, 24, 48 and 60 h after the start of 

treatment for between-patient variability were available for 18, 18, 15, 10 and 10 

patients, respectively. Median CV for the five time points was 71.8% (mean, 78.7%), 

with a range of 55.4–99.9%. 

 

Five outliers were excluded from the calculation of the within-patient and between-

patient CV. 
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4. Discussion 

To the best of our knowledge, this is the first observational study describing piperacillin 

concentrations over the entire treatment period in a heterogeneous group of adult ICU 

patients treated with continuous dosing. As expected, most patients showed a rapid rise 

in piperacillin concentration after receiving a loading dose; indeed, the vast majority 

(88.9%) reached the pre-defined target concentration of 80 mg/L within 1 h after the 

start of treatment. Over the course of time, however, despite continuous administration, 

a large inter-individual and intra-individual variability in piperacillin concentrations was 

observed in this population, with a trend toward lower concentrations over time (Fig. 1). 

This large variability was also found in a recent study evaluating extended, i.e. 

prolonged but not continuous, infusion of piperacillin in ICU patients [35]. 

 

Overall, the combined target of a total piperacillin concentration ≥80 mg/L reached 

within 1 h after starting study treatment AND maintained throughout the treatment 

course was met in only 27.8% of patients. Large recent studies analysing conventional 

dosing of -lactams showed similar results, where pre-defined targets were not met in a 

large proportion of patients [13,15]. 

 

Total and unbound piperacillin concentrations were compared in a subset of samples; 

as expected, the difference between free and total concentrations was small. Because 

this difference is small, the cheaper and easier total concentration will suffice, as 

employed by others [36]. 
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Toxic levels of piperacillin are not well defined in the literature. No clinical signs of 

overdosing (convulsions) were seen in the current cohort. 

 

Although a matter of debate, we chose an ‘aggressive’ combined target of 100%T≥5xMIC 

for total piperacillin concentration in the maintenance phase, with a presumed protein 

binding of ca. 20–30% for piperacillin, using the piperacillin MIC breakpoint for P. 

aeruginosa. Within the set definition, the target concentration was to be met within a 

small timeframe, i.e. 1 h. PK/PD indices vary widely in the literature, ranging from 

100%fT>MIC to 40–100%fT>4xMIC for unbound piperacillin concentrations [37]. There is no 

conclusive evidence as to which target is required for an optimal therapeutic effect. 

Altered pharmacokinetics in the critical care patient and possible infection by pathogens 

with an MIC at or near the resistant breakpoint increase the risk of underdosing [11]. We 

chose the strict combined target to ensure maximum killing of most problematic (Gram-

negative) pathogens in a primarily empirical treatment setting. Supplementary Table S1 

illustrates the consequence of different target levels. Obviously, target attainment is 

influenced by the MIC judged to be relevant as dictated by local resistance patterns. A 

less strict target of 100%T>MIC was still not met in 16.7% of patients (Table 2). Assuming 

the great majority of Gram-negatives to have an MIC < 16 mg/L would allow to start 

using the ‘one size fits all’ continuous dosing schedule, as was done in this study. 

Sampling for therapeutic drug monitoring (TDM) could then be done at any time during 

the maintenance phase to enable proper dose adjustment; in combination with culture 

results, assuming that these are available, this could mean lowering the dosing 

schedule in a substantial proportion of the population. However, if more resistant 
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pathogens are cultured or if expected higher targets have to be met, the perspective 

changes. This would then make a case for TDM throughout the course of treatment. 

Piperacillin has a large therapeutic range. In this study, lower piperacillin concentrations 

were found over the course of treatment and a suboptimal target was attained, even 

when a lower target of 100%T>MIC was set. Therefore, it seems safe and logical to start 

a larger cumulative dosing regimen, e.g. 16 g daily of piperacillin infused over 24 h, 

preceded by a loading dose of 4 g of piperacillin infused over 20 min, in a ‘hit fast, hit 

high’ strategy, followed, if possible, by downgrading based on TDM and cultured 

causative micro-organism. 

 

In our view, strengths of this study include it being the first observational study 

describing piperacillin concentrations in adult ICU patients treated with continuous 

dosing over the entire treatment period. Furthermore, total as well as unbound 

concentrations were assessed. 

 

This study also has some limitations. Only piperacillin concentrations were analysed, 

not tazobactam. Piperacillin and tazobactam pharmacokinetics are not identical and in 

patients with renal function loss tazobactam overdose might occur [38]. As outlined in 

the methods, in several patients piperacillin treatment was started intermittently before 

start of the study. As treatment was given in intervals of 8 h, in these patients it was still 

relevant to assess whether the target was met after the start of study treatment, i.e. 

continuous dosing directly after a bolus infused over 20 min. 
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Some samples were excluded from analysis as they were identified as outliers. 

Measurement of CLCr by UCreat  UVol/time  SCreat was not available in all patients; 

in 5 of 18 patients renal function was estimated using the MDRD formula. In this 

analysis, renal function measured/estimated on the first study day was used. In daily 

practice, however, in most patients CLCr was measured and in no alteration in dosing 

due to significant changes in CLCr was needed. Patients with renal replacement therapy 

or other extracorporeal support were excluded because in these patients we considered 

kinetics to be so complicated that this deserves a separate study. The sample size was 

too small to identify subgroups that would benefit most from TDM. 

 

5. Conclusions 

These data show a large variability in piperacillin concentrations in critically ill patients 

treated with continuous dosing following a loading dose. With the dosing schedule used, 

the target set to reach 5 MIC of P. aeruginosa during the entire continuous infusion 

from 1 h after the start of treatment could not be attained. Very low levels were rare. 

From a pharmacokinetic point of view, continuous dosing is more advantageous than 

intermittent dosing. However, optimising this dosing strategy merits further attention, as 

shown by the current data. Depending on which target is to be met, a larger initial 

cumulative dose is desirable, combined with TDM, to avoid subtherapeutic drug 

concentrations. Formal proof-of-effect of antibiotic concentrations on survival in 

randomised controlled studies is still lacking, but it seems both logical and feasible to try 

to achieve optimal dosing. 
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Fig. 1 Total piperacillin concentration over time, from the start of treatment, group level. 

 

Dark line middle of box = median; whiskers represent 1.5  IQR; circles represent outliers between 1.5–3 

 IQR; star represents outlier >3  IQR; horizontal lines (16 mg/L and 80 mg/L) represent target 

concentrations discussed in text. The number of data used per boxplots is given above the respective 

boxplot. IQR, interquartile range. 
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Table 1 Baseline characteristics and clinical outcome data of patients include in the 

study (n = 18) 

Variable Median [IQR] {range} or n (%) 

Age (years) 61.5 [54–66.3] {19–72} 

Male sex 14 (77.8) 

BMI (kg/m2) 25.1 [22.6–29.7] {21.6–41.2} 

Patient category  

Medical 6 (33.3) 

Surgery 10 (55.6) 

Trauma 2 (11.1) 

Presumed/proven site of infection  

Intra-abdominal 12 (66.7) 

Respiratory 3 (16.7) 

Skin/soft tissue 1 (5.6) 

Unknown 2 (11.1) 

Co-morbidities a  

None 5 (27.8) 

Solid malignancy 6 (33.3) 

Haemato-oncology 1 (5.6) 

Cardiovascular 6 (33.3) 

Chronic pulmonary 2 (11.1) 

Inflammatory bowel disease/diverticulitis 2 (11.1) 

Cushing’s syndrome 2 (11.1) 

Liver cirrhosis 1 (5.6) 

Diabetes 1 (5.6) 

APACHE IV score b 64 [56–85] {24–128} 

Mechanical ventilation 16 (88.9) 

Use of vasopressors 17 (94.4) 

Measured CLCr (mL/min) c 62.5 [26.8–116.8] {3.4–183.8} 
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ICU length of stay (days) 9 [3–13.3] {2–75} 

ICU mortality 4 (22.2) 

Hospital mortality 4 (22.2) 

IQR, interquartile range; BMI, body mass index; APACHE, Acute Physiology and 

Chronic Health Evaluation; CLCr, creatine clearance; ICU, intensive care unit. 

a More than one variable per patient possible. 

b Available in 13 patients. 

c Available in 13 patients. 
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Table 2 Total piperacillin concentration (mg/L) from 1 h after the start of treatment 

(maintenance phase) and target attainment 

 N (% of 

172 

samples) 

N (% of 18 

patients) 

Median Interquartile 

range 

Follow-up (h) a   60 33–96 

Concentration (n = 172 samples) 

(mg/L) 

  65.7 4.9–131.8 

Total range, 

8.7–284.9 

Cmax (n = 18 patients) (mg/L)   144.5 119.4–217.3 

Cmin (n = 18 patients) (mg/L)   46.2 28.7–87.2 

C ≥ 80 mg/L from 1 h after start of 

treatment 

73 (42.4%)    

C > 16 mg/L from 1 h after start of 

treatment 

168 

(97.7%) 

   

% of samples with C ≥ 80 mg/L 

from 1 h after start of treatment, 

per patient (n = 18) 

  39.6 15.5–100 

% of samples with C ≥ 16 mg/L 

from 1 h after start of treatment, 

per patient (n = 18) 

  100 100–100 

C ≥ 80 mg/L reached within 1 h 

after start of treatment 

 16 (88.9%)   

C > 16 mg/L reached within 1 h 

after start of treatment 

 18 (100%)   

C ≥ 80 mg/L reached within 1 h 

after start of treatment AND 

persistent C ≥ 80 mg/L from 1 h 

after start of treatment 

 5 (27.8%)   
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C > 16 mg/L reached within 1 h 

after start of treatment AND 

persistent C ≥ 16 mg/L from 1 h 

after start of treatment 

 15 (83.3%)   

0% of samples C ≥ 80 mg/L from 1 

h after start of treatment, per 

patient (n = 18) 

 2 (11.1%)   

0% of samples C ≥ 16 mg/L from 1 

h after start of treatment, per 

patient (n = 18) 

 0 (0%)   

Cmax, maximum concentration; Cmin, minimum concentration; C, concentration. 

a Duration of treatment with piperacillin, including sampling of piperacillin concentrations 

per protocol. 
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