5 research outputs found

    Evolution and Global Transmission of a Multidrug-Resistant, Community-Associated Methicillin-Resistant Staphylococcus aureus Lineage from the Indian Subcontinent.

    Get PDF
    The evolution and global transmission of antimicrobial resistance have been well documented for Gram-negative bacteria and health care-associated epidemic pathogens, often emerging from regions with heavy antimicrobial use. However, the degree to which similar processes occur with Gram-positive bacteria in the community setting is less well understood. In this study, we traced the recent origins and global spread of a multidrug-resistant, community-associated Staphylococcus aureus lineage from the Indian subcontinent, the Bengal Bay clone (ST772). We generated whole-genome sequence data of 340 isolates from 14 countries, including the first isolates from Bangladesh and India, to reconstruct the evolutionary history and genomic epidemiology of the lineage. Our data show that the clone emerged on the Indian subcontinent in the early 1960s and disseminated rapidly in the 1990s. Short-term outbreaks in community and health care settings occurred following intercontinental transmission, typically associated with travel and family contacts on the subcontinent, but ongoing endemic transmission was uncommon. Acquisition of a multidrug resistance integrated plasmid was instrumental in the emergence of a single dominant and globally disseminated clade in the early 1990s. Phenotypic data on biofilm, growth, and toxicity point to antimicrobial resistance as the driving force in the evolution of ST772. The Bengal Bay clone therefore combines the multidrug resistance of traditional health care-associated clones with the epidemiological transmission of community-associated methicillin-resistant S. aureus (MRSA). Our study demonstrates the importance of whole-genome sequencing for tracking the evolution of emerging and resistant pathogens. It provides a critical framework for ongoing surveillance of the clone on the Indian subcontinent and elsewhere.IMPORTANCE The Bengal Bay clone (ST772) is a community-associated and multidrug-resistant Staphylococcus aureus lineage first isolated from Bangladesh and India in 2004. In this study, we showed that the Bengal Bay clone emerged from a virulent progenitor circulating on the Indian subcontinent. Its subsequent global transmission was associated with travel or family contact in the region. ST772 progressively acquired specific resistance elements at limited cost to its fitness and continues to be exported globally, resulting in small-scale community and health care outbreaks. The Bengal Bay clone therefore combines the virulence potential and epidemiology of community-associated clones with the multidrug resistance of health care-associated S. aureus lineages. This study demonstrates the importance of whole-genome sequencing for the surveillance of highly antibiotic-resistant pathogens, which may emerge in the community setting of regions with poor antibiotic stewardship and rapidly spread into hospitals and communities across the world

    External quality assessment of SARS-CoV-2-sequencing: An ESGMD-SSM pilot trial across 15 European laboratories

    Get PDF
    Objective: This first pilot on external quality assessment (EQA) of SARS-CoV-2 whole genome sequencing, initiated by the ESCMID Study Group for Genomic and Molecular Diagnostics (ESGMD) and Swiss Society for Microbiology (SSM), aims to build a framework between laboratories in order to improve pathogen surveillance sequencing.Methods: Ten samples with varying viral loads were sent out to 15 clinical laboratories who had free choice of sequencing methods and bioinformatic analyses. The key aspects on which the individual centres were compared on were identification of 1) SNPs and indels, 2) Pango lineages, and 3) clusters between samples.Results: The participating laboratories used a wide array of methods and analysis pipelines. Most were able to generate whole genomes for all samples. Genomes were sequenced to varying depth (up to 100-fold difference across centres). There was a very good consensus regarding the majority of reporting criteria, but there were a few discrepancies in lineage and cluster assignment. Additionally, there were inconsistencies in variant calling. The main reasons for discrepancies were missing data, bioinformatic choices, and interpretation of data.Conclusions: The pilot EQA was an overall success. It was able to show the high quality of participating labs and provide valuable feedback in cases where problems occurred, thereby improving the sequencing setup of laboratories. A larger follow-up EQA should, however, improve on defining the variables and format of the report. Additionally, contamination and/or minority variants should be a further aspect of assessment.</p
    corecore