182 research outputs found

    Functional analysis of gingival immune cells at the single cell level reveals new therapeutic targets for periodontal treatment

    Full text link
    BACKGROUND: Immune cells promote periodontal bone loss through an unresolved inflammatory response to bacterial pathogens. The limited availability of ex vivo gingival immune cells severely impedes identification of cell types and cell-specific functions that drive human periodontitis and thus impedes the development of effective pharmacotherapeutics. Previous studies have largely relied on mRNA analysis and confocal microscopy to imprecisely estimate gingival immune cell function. The aim of the study was to develop a cell type-specific technique to quantitate function of resident gingival immune cells. METHODS: Diseased tissues from chronic periodontitis in non-diabetes or type 2 diabetes subjects or relatively healthy gingival tissues were removed during standard-of-care surgery for pocket reduction surgery or crown lengthening, respectively. Gingiva was dissociated with collagenase to generate single cell suspensions, then 9-color flow cytometry was used quantitate and/or isolate myeloid cells (CD11b+), B cells (CD20+), T cells (CD4+ or CD8+) and natural killer (NK) cells (CD56+). We stimulated the sorted cells with lineage-appropriate activators for 36 hrs and measured cytokine production by ELISPOT, an assay that identifies individual cytokine-producing cells by fixed “spots” on a solid support. RESULTS: A higher proportion of gingival CD4+ T helper cells and not CD8+cytoxic T cells from subjects with periodontal disease with or without type 2 diabetes produce pro-inflammatory cytokines compared to CD4+ T cells from crown lengthening subjects. CD4+ T cells were the dominant cell population in gingiva from all three groups, and all groups contained similar proportions of cytotoxic (CD8+) T cells, myeloid cells (CD11b+), B cells (CD20+) and natural killer cells (CD56+). CONCLUSION: The combination of flow cytometry, cell sorting and ELISPOT identified CD4+ T cells as dominant immune cells in human periodontal lesions, and identified T cell cytokines that may uniquely promote periodontitis in type 2 diabetes

    A matter of words: NLP for quality evaluation of Wikipedia medical articles

    Get PDF
    Automatic quality evaluation of Web information is a task with many fields of applications and of great relevance, especially in critical domains like the medical one. We move from the intuition that the quality of content of medical Web documents is affected by features related with the specific domain. First, the usage of a specific vocabulary (Domain Informativeness); then, the adoption of specific codes (like those used in the infoboxes of Wikipedia articles) and the type of document (e.g., historical and technical ones). In this paper, we propose to leverage specific domain features to improve the results of the evaluation of Wikipedia medical articles. In particular, we evaluate the articles adopting an "actionable" model, whose features are related to the content of the articles, so that the model can also directly suggest strategies for improving a given article quality. We rely on Natural Language Processing (NLP) and dictionaries-based techniques in order to extract the bio-medical concepts in a text. We prove the effectiveness of our approach by classifying the medical articles of the Wikipedia Medicine Portal, which have been previously manually labeled by the Wiki Project team. The results of our experiments confirm that, by considering domain-oriented features, it is possible to obtain sensible improvements with respect to existing solutions, mainly for those articles that other approaches have less correctly classified. Other than being interesting by their own, the results call for further research in the area of domain specific features suitable for Web data quality assessment

    Mineralogical and geochemical study of rodingites and associated serpentinized peridotite, Eastern Desert of Egypt, Arabian-Nubian Shield

    Get PDF
    We studied rodingite and rodingite-like rocks within a serpentinized ultramafic sequence and ophiolitic mélange at Um Rashid, in the Eastern Desert of Egypt. The Um Rashid ophiolite is strongly deformed, metamorphosed, and altered by serpentinization, carbonatization, listvenitization, rodingitization and silicification. The textures, whole-rock chemistry, and composition of fresh primary mineral relics show that the serpentinite protoliths were strongly melt-depleted harzburgite and minor dunite, typical of a supra-subduction zone fore-arc setting. The light-colored rocks replacing gabbro are divided on the basis of field relations, mineral assemblages and geochemical characteristics into typical rodingite and rodingite-like rock. Typical rodingite, found as blocks with chloritite blackwall rims within ophiolitic mélange, contains garnet, vesuvianite, diopside and chlorite with minor prehnite and opaque minerals. Rodingite-like rock, found as dykes in serpentinite, consists of hercynite, preiswerkite, margarite, corundum, prehnite, ferropargasite, albite, andesine, clinozoisite and diaspore. Some rodingite-like rock samples preserve relict gabbroic minerals and texture, whereas typical rodingite is fully replaced. Rodingite is highly enriched in CaO, Fe₂O₃, MgO, and compatible trace elements, whereas rodingite-like rock is strongly enriched in Al₂O₃ and incompatible trace elements. Based on geochemistry and petrographic evidence, both types of rodingitic rocks likely developed from mafic protoliths in immediate proximity to serpentinite but were affected by interaction with different fluids, most likely at different times. Typical rodingite development likely accompanied serpentinization and shows mineral assemblages characteristic of low-Si, high-Ca fluid infiltration at about 300 °C. Rodingite-like rock, on the other hand, likely developed from seawater infiltration

    Mineralogical and geochemical study of rodingites and associated serpentinized peridotite, Eastern Desert of Egypt, Arabian-Nubian Shield

    Get PDF
    We studied rodingite and rodingite-like rocks within a serpentinized ultramafic sequence and ophiolitic mélange at Um Rashid, in the Eastern Desert of Egypt. The Um Rashid ophiolite is strongly deformed, metamorphosed, and altered by serpentinization, carbonatization, listvenitization, rodingitization and silicification. The textures, whole-rock chemistry, and composition of fresh primary mineral relics show that the serpentinite protoliths were strongly melt-depleted harzburgite and minor dunite, typical of a supra-subduction zone fore-arc setting. The light-colored rocks replacing gabbro are divided on the basis of field relations, mineral assemblages and geochemical characteristics into typical rodingite and rodingite-like rock. Typical rodingite, found as blocks with chloritite blackwall rims within ophiolitic mélange, contains garnet, vesuvianite, diopside and chlorite with minor prehnite and opaque minerals. Rodingite-like rock, found as dykes in serpentinite, consists of hercynite, preiswerkite, margarite, corundum, prehnite, ferropargasite, albite, andesine, clinozoisite and diaspore. Some rodingite-like rock samples preserve relict gabbroic minerals and texture, whereas typical rodingite is fully replaced. Rodingite is highly enriched in CaO, Fe₂O₃, MgO, and compatible trace elements, whereas rodingite-like rock is strongly enriched in Al₂O₃ and incompatible trace elements. Based on geochemistry and petrographic evidence, both types of rodingitic rocks likely developed from mafic protoliths in immediate proximity to serpentinite but were affected by interaction with different fluids, most likely at different times. Typical rodingite development likely accompanied serpentinization and shows mineral assemblages characteristic of low-Si, high-Ca fluid infiltration at about 300 °C. Rodingite-like rock, on the other hand, likely developed from seawater infiltration

    Is Content Really King? An Objective Analysis of the Public's Response to Medical Videos on YouTube

    Get PDF
    Medical educators and patients are turning to YouTube to teach and learn about medical conditions. These videos are from authors whose credibility cannot be verified & are not peer reviewed. As a result, studies that have analyzed the educational content of YouTube have reported dismal results. These studies have been unable to exclude videos created by questionable sources and for non-educational purposes. We hypothesize that medical education YouTube videos, authored by credible sources, are of high educational value and appropriately suited to educate the public. Credible videos about cardiovascular diseases were identified using the Mayo Clinic's Center for Social Media Health network. Content in each video was assessed by the presence/absence of 7 factors. Each video was also evaluated for understandability using the Suitability Assessment of Materials (SAM). User engagement measurements were obtained for each video. A total of 607 videos (35 hours) were analyzed. Half of all videos contained 3 educational factors: treatment, screening, or prevention. There was no difference between the number of educational factors present & any user engagement measurement (p NS). SAM scores were higher in videos whose content discussed more educational factors (p<0.0001). However, none of the user engagement measurements correlated with higher SAM scores. Videos with greater educational content are more suitable for patient education but unable to engage users more than lower quality videos. It is unclear if the notion “content is king� applies to medical videos authored by credible organizations for the purposes of patient education on YouTube

    Numerical simulation of blood flow and pressure drop in the pulmonary arterial and venous circulation

    Get PDF
    A novel multiscale mathematical and computational model of the pulmonary circulation is presented and used to analyse both arterial and venous pressure and flow. This work is a major advance over previous studies by Olufsen et al. (Ann Biomed Eng 28:1281–1299, 2012) which only considered the arterial circulation. For the first three generations of vessels within the pulmonary circulation, geometry is specified from patient-specific measurements obtained using magnetic resonance imaging (MRI). Blood flow and pressure in the larger arteries and veins are predicted using a nonlinear, cross-sectional-area-averaged system of equations for a Newtonian fluid in an elastic tube. Inflow into the main pulmonary artery is obtained from MRI measurements, while pressure entering the left atrium from the main pulmonary vein is kept constant at the normal mean value of 2 mmHg. Each terminal vessel in the network of ‘large’ arteries is connected to its corresponding terminal vein via a network of vessels representing the vascular bed of smaller arteries and veins. We develop and implement an algorithm to calculate the admittance of each vascular bed, using bifurcating structured trees and recursion. The structured-tree models take into account the geometry and material properties of the ‘smaller’ arteries and veins of radii ≥ 50 μ m. We study the effects on flow and pressure associated with three classes of pulmonary hypertension expressed via stiffening of larger and smaller vessels, and vascular rarefaction. The results of simulating these pathological conditions are in agreement with clinical observations, showing that the model has potential for assisting with diagnosis and treatment for circulatory diseases within the lung

    Radiological Hazards and Natural Radionuclide Distribution in Granitic Rocks of Homrit Waggat Area, Central Eastern Desert, Egypt

    Full text link
    Natural radioactivity, radiological hazard, and petrological studies of Homrit Waggat granitic rocks, Central Eastern Desert, Egypt were performed in order to assess their suitability as ornamental stone. On the basis of mineralogical and geochemical compositions, Homrit Waggat granitic rocks can be subdivided into two subclasses. The first class comprises granodiorite and tonalite (I-type) and is ascribed to volcanic arc, whereas the second one includes alkali-feldspar granite, syenogranite, and albitized granite with high-K calc alkaline character, which is related to post-orogenic granites.238 U,226 Ra,232 Th, and40 K activities of natural radionuclides occurring in the examined rocks were measured radiometrically using sodium iodide detector. Furthermore, assessment of the hazard indices—such as: annual effective dose (AED) with mean values (0.11, 0.09, 0.07, 0.05, and 0.03, standard value = 0.07); gamma radiation index (Iγ) with mean values (0.6, 0.5, 0.4, 0.3, and 0.14, standard value = 0.5); internal (Hin) with mean values (0.6, 0.5, 0.4, 0.3, and 0.2, standard value = 1.0); external (Hex) index (0.5, 0.4, 0.3, 0.24, and 0.12, standard value = 1.0); absorbed gamma dose rate (D) with mean values (86.4, 75.9, 53.5, 43.6, and 20.8, standard value = 57); and radium equivalent activity (Raeq) with mean values (180, 154, 106.6, 90.1, and 42.7, standard value = 370)—were evaluated with the knowledge of the natural radionuclides. The result of these indices falls within the acceptable worldwide limits. Therefore, we suggest that these rocks are safe to be used in industrial applications. © 2022 by the authors. Licensee MDPI, Basel, Switzerland.RF 3621/2021The researcher (Hamdy A. Awad) is funded by a scholarship under the Joint Executive Program between Egypt and Russian Federation. The work of the author A.E. and the APC were funded by the “Dunarea de Jos” University of Galati, Romania and grant no. RF 3621/2021
    corecore