12 research outputs found

    The interface between assisted reproductive technologies and genetics: technical, social, ethical and legal issues

    Get PDF
    The interface between assisted reproductive technologies (ART) and genetics comprises several sensitive and important issues that affect infertile couples, families with severe genetic diseases, potential children, professionals in ART and genetics, health care, researchers and the society in general. Genetic causes have a considerable involvement in infertility. Genetic conditions may also be transmitted to the offspring and hence create transgenerational infertility or other serious health problems. Several studies also suggest a slightly elevated risk of birth defects in children born following ART. Preimplantation genetic diagnosis (PGD) has become widely practiced throughout the world for various medical indications, but its limits are being debated. The attitudes towards ART and PGD vary substantially within Europe. The purpose of the present paper was to outline a framework for development of guidelines to be issued jointly by European Society of Human Genetics and European Society of Human Reproduction and Embryology for the interface between genetics and ART. Technical, social, ethical and legal issues of ART and genetics will be reviewed.JRC.J.5-Agriculture and Life Sciences in the Econom

    Letter to Human Genetics Journals

    No full text

    Letter to Human Genetics Journals

    No full text

    The development of the public and professional policy committee

    No full text

    Correction: Dispelling myths about rare disease registry system development

    Get PDF
    After publication of this work [1], we noted that we inadvertently failed to include important Acknowledgments in our final version of the manuscript. Please see below the modification

    Dispelling myths about rare disease registry system development

    Get PDF
    Rare disease registries (RDRs) are an essential tool to improve knowledge and monitor interventions for rare diseases. If designed appropriately, patient and disease related information captured within them can become the cornerstone for effective diagnosis and new therapies. Surprisingly however, registries possess a diverse range of functionality, operate in different, often-times incompatible, software environments and serve various, and sometimes incongruous, purposes. Given the ambitious goals of the International Rare Diseases Research Consortium (IRDiRC) by 2020 and beyond, RDRs must be designed with the agility to evolve and efficiently interoperate in an ever changing rare disease landscape, as well as to cater for rapid changes in Information Communication Technologies. In this paper, we contend that RDR requirements will also evolve in response to a number of factors such as changing disease definitions and diagnostic criteria, the requirement to integrate patient/disease information from advances in either biotechnology and/or phenotypying approaches, as well as the need to adapt dynamically to security and privacy concerns. We dispel a number of myths in RDR development, outline key criteria for robust and sustainable RDR implementation and introduce the concept of a RDR Checklist to guide future RDR development

    Patenting and licensing in genetic testing - Recommendations of the European Society of Human Genetics

    No full text
    Patents for inventions can be beneficial for society, if they drive innovation and promote progress. In most areas, the patenting system works satisfactorily. However, it must be recognized that in some instances it can also be problematic; this is the case in the field of genetics, and particularly in the area of genetic testing. As patents should serve their original purpose (promoting innovation through a fair reward system for the inventors), the European Society of Human Genetics (ESHG) suggests ways to improve the mechanisms that already form part of the patents system as a whole. In brief, the ESHG recommends limiting the breadth of the claims in genetic patents and, more practically, to reduce the number of patents by limiting the patentable subject matter, thereby improving the quality of the patents that will eventually be granted. There is also a suggestion to redefine the concept of utility in patent law, by taking account of downstream clinical experience. The ESHG sees no harm in the patenting of novel technical tools for genetic testing (eg PCR or chip technologies), as they can promote investment and still allow for invention around them. Many disputes between supporters of the patenting system and the public revolve around ethical issues. The European Patent Office should consider the benefit of having an ethics committee to consider issues of major interest, such as patents applied to genes. The problem of licensing should also be addressed. Practically, this means supporting the Organisation for Economic Co-operation and Development guidelines, which prescribe that licences should be non-exclusive and easily obtainable, both in practical and in financial terms. To promote this, the practical exploration of alternative models for licensing, like patent pools and clearinghouses, is a rerequisite. To better track developments in this field, the establishment of a voluntary reporting system, whereby geneticists could report on any issues related to new and/or old patents or licences in the light of service provision to patients, would be worthwhile. Finally, the ESHG is calling upon all stakeholders to start the process of developing a code of conduct for partners with patents, covering ethical aspects as well as smooth licensing arrangements

    Report of an international survey of molecular genetic testing laboratories

    No full text
    Objective: To collect data on the practices of molecular genetic testing (MGT) laboratories for the development of national and international policies for quality assurance (QA). Methods: A web-based survey of MGT laboratory directors (n = 827; response rate 63%) in 18 countries on 3 continents. QA and reporting indices were developed and calculated for each responding laboratory. Results: Laboratory setting varied among and within countries, as did qualifications of the directors. Respondents in every country indicated that their laboratory receives specimens from outside their national borders (64%, n = 529). Pair-wise comparisons of the QA index revealed a significant association with the director having formal training in molecular genetics (p < 0.005), affiliation with a genetics unit (p = 0.003), accreditation of the laboratory (p < 0.005) and participation in proficiency testing (p < 0.005). Research labs had a lower mean report score compared to all other settings (p < 0.05) as did laboratories accessioning <150 samples per year. Conclusion: MGT is provided under widely varying conditions and regulatory frameworks. The data provided here may be a useful guide for policy action at both governmental and professional levels
    corecore