25 research outputs found

    Diabetes Is the Main Factor Accounting for Hypomagnesemia in Obese Subjects

    Get PDF
    OBJECTIVE: Type 2 diabetes (T2DM) and obesity are associated with magnesium deficiency. We aimed to determine whether the presence of type 2 diabetes and the degree of metabolic control are related to low serum magnesium levels in obese individuals. METHODS: A) Case-control study: 200 obese subjects [50 with T2DM (cases) and 150 without diabetes (controls)] prospectively recruited. B) Interventional study: the effect of bariatric surgery on serum magnesium levels was examined in a subset of 120 obese subjects (40 with type 2 diabetes and 80 without diabetes). RESULTS: Type 2 diabetic patients showed lower serum magnesium levels [0.75±0.07 vs. 0.81±0.06 mmol/L; mean difference -0.06 (95% CI -0.09 to -0.04); p<0.001] than non-diabetic patients. Forty-eight percent of diabetic subjects, but only 15% of non-diabetic subjects showed a serum magnesium concentration lower than 0.75 mmol/L. Significant negative correlations between magnesium and fasting plasma glucose, HbA1c, HOMA-IR, and BMI were detected. Multiple linear regression analysis showed that fasting plasma glucose and HbA1c independently predicted serum magnesium. After bariatric surgery serum magnesium increased only in those patients in whom diabetes was resolved, but remain unchanged in those who not, without difference in loss weight between groups. Changes in serum magnesium negatively correlated with changes in fasting plasma glucose and HbA1c. Absolute changes in HbA1c independently predicted magnesium changes in the multiple linear regression analysis. CONCLUSIONS: Our results provide evidence that the presence of diabetes and the degree of metabolic control are essential in accounting for the lower levels of magnesium that exist in obese subjects

    Genome-Wide Association Studies of Serum Magnesium, Potassium, and Sodium Concentrations Identify Six Loci Influencing Serum Magnesium Levels

    Get PDF
    Magnesium, potassium, and sodium, cations commonly measured in serum, are involved in many physiological processes including energy metabolism, nerve and muscle function, signal transduction, and fluid and blood pressure regulation. To evaluate the contribution of common genetic variation to normal physiologic variation in serum concentrations of these cations, we conducted genome-wide association studies of serum magnesium, potassium, and sodium concentrations using ∼2.5 million genotyped and imputed common single nucleotide polymorphisms (SNPs) in 15,366 participants of European descent from the international CHARGE Consortium. Study-specific results were combined using fixed-effects inverse-variance weighted meta-analysis. SNPs demonstrating genome-wide significant (p<5×10−8) or suggestive associations (p<4×10−7) were evaluated for replication in an additional 8,463 subjects of European descent. The association of common variants at six genomic regions (in or near MUC1, ATP2B1, DCDC5, TRPM6, SHROOM3, and MDS1) with serum magnesium levels was genome-wide significant when meta-analyzed with the replication dataset. All initially significant SNPs from the CHARGE Consortium showed nominal association with clinically defined hypomagnesemia, two showed association with kidney function, two with bone mineral density, and one of these also associated with fasting glucose levels. Common variants in CNNM2, a magnesium transporter studied only in model systems to date, as well as in CNNM3 and CNNM4, were also associated with magnesium concentrations in this study. We observed no associations with serum sodium or potassium levels exceeding p<4×10−7. Follow-up studies of newly implicated genomic loci may provide additional insights into the regulation and homeostasis of human serum magnesium levels

    Spread of X Inactivation on Chromosome 15 is Associated with a More Severe Phenotype in a Girl with an Unbalanced t(X;15) Translocation

    No full text
    We report on a baby girl with multiple congenital abnormalities, including cleft palate, intrauterine growth restriction, and double outlet right ventricle (DORV) with ventricular septal defect. She had an unbalanced chromosome translocation t (X;15) resulting in monosomy 15pter → p10 and trisomy Xq13.1 → q28. All three copies of Xq encompass the XIST gene. It is known that X chromosome inactivation could spread to the autosome part of an unbalanced translocation involving chromosome X and an autosome. To confirm the spread of X chromosome inactivation on chromosome 15, we evaluate the methylation change by the HumanMethylation450 BeadChip, a whole genome DNA methylation micorarray that includes 15,259 probes spanning 717 genes on chromosome 15. Results showed there was gain in DNA methylation of more than 20% in 586 CpG sites spanning the long arm of chromosome 15. We further examined the hypermethylated CpG sites located in CpG-island promoter, because genes subjected to X chromosome inactivation will have an increase in DNA methylation level in this region. A total of 75 sites representing 24 genes were hypermethylated. Nearly all of these probes are located in region proximal to the breakpoint, from 15q11.2 to 15q21.3 (35Mb) suggesting that X inactivation was spread to the proximal region of 15q. Gain of DNA methylation, especially in the CpG-island promoter, can result in functional inactivation of genes, and therefore could potentially worsen the phenotype of our patient. © 2014 Wiley Periodicals, Inc

    Mutation analysis of RAD51D in non-BRCA1/2 ovarian and breast cancer families

    Get PDF
    BACKGROUND: Recent data show that mutations in RAD51D have an aetiological role in ovarian carcinoma, yet mutations do not appear to be associated with an increased risk for breast cancer. We studied ovarian and breast cancer families having at least one woman affected by ovarian carcinoma, to assess the importance of RAD51D mutations in such families. METHODS: The coding region of the RAD51D gene was analysed in 175 BRCA1/2-negative families with family histories of both ovarian and breast cancer ascertained from two Canadian and two Belgian institutions. RESULTS: We identified one previously reported deleterious mutation, p.Arg186(*) (c.556C>T), and two novel variants; missense substitution p.Cys119Arg and an intronic variant c.83-26A>G. p.Arg186(*) segregated with the disease in the family and two ovarian carcinomas available for analysis showed loss of the wild-type allele, but the novel variants are likely neutral. CONCLUSION: RAD51D should be included in genetic screening of ovarian cancer families that do not have BRCA1/BRCA2 mutations. We show that mutations are more likely to be found in families with two or more ovarian cancers, or in probands with first-degree relatives with ovarian cancer, and we feel testing should be preferentially offered to affected women from such families

    BAFopathies' DNA methylation epi-signatures demonstrate diagnostic utility and functional continuum of Coffin-Siris and Nicolaides-Baraitser syndromes

    Get PDF
    Coffin-Siris and Nicolaides-Baraitser syndromes (CSS and NCBRS) are Mendelian disorders caused by mutations in subunits of the BAF chromatin remodeling complex. We report overlapping peripheral blood DNA methylation epi-signatures in individuals with various subtypes of CSS (ARID1B, SMARCB1, and SMARCA4) and NCBRS (SMARCA2). We demonstrate that the degree of similarity in the epi-signatures of some CSS subtypes and NCBRS can be greater than that within CSS, indicating a link in the functional basis of the two syndromes. We show that chromosome 6q25 microdeletion syndrome, harboring ARID1B deletions, exhibits a similar CSS/NCBRS methylation profile. Specificity of this epi-signature was confirmed across a wide range of neurodevelopmental conditions including other chromatin remodeling and epigenetic machinery disorders. We demonstrate that a machine-learning model trained on this DNA methylation profile can resolve ambiguous clinical cases, reclassify those with variants of unknown significance, and identify previously undiagnosed subjects through targeted population screening
    corecore