884 research outputs found

    Ambroxol improves lysosomal biochemistry in glucocerebrosidase mutation-linked Parkinson disease cells.

    Get PDF
    Gaucher disease is caused by mutations in the glucocerebrosidase gene, which encodes the lysosomal hydrolase glucosylceramidase. Patients with Gaucher disease and heterozygous glucocerebrosidase mutation carriers are at increased risk of developing Parkinson's disease. Indeed, glucocerebrosidase mutations are the most frequent risk factor for Parkinson's disease in the general population. Therefore there is an urgent need to understand the mechanisms by which glucocerebrosidase mutations predispose to neurodegeneration to facilitate development of novel treatments. To study this we generated fibroblast lines from skin biopsies of five patients with Gaucher disease and six heterozygous glucocerebrosidase mutation carriers with and without Parkinson's disease. Glucosylceramidase protein and enzyme activity levels were assayed. Oxidative stress was assayed by single cell imaging of dihydroethidium. Glucosylceramidase enzyme activity was significantly reduced in fibroblasts from patients with Gaucher disease (median 5% of controls, P = 0.0001) and heterozygous mutation carriers with (median 59% of controls, P = 0.001) and without (56% of controls, P = 0.001) Parkinson's disease compared with controls. Glucosylceramidase protein levels, assessed by western blot, were significantly reduced in fibroblasts from Gaucher disease (median glucosylceramidase levels 42% of control, P < 0.001) and heterozygous mutation carriers with (median 59% of control, P < 0.001) and without (median 68% of control, P < 0.001) Parkinson's disease. Single cell imaging of dihydroethidium demonstrated increased production of cytosolic reactive oxygen species in fibroblasts from patients with Gaucher disease (dihydroethidium oxidation rate increased by a median of 62% compared to controls, P < 0.001) and heterozygous mutation carriers with (dihydroethidium oxidation rate increased by a median of 68% compared with controls, P < 0.001) and without (dihydroethidium oxidation rate increased by a median of 70% compared with controls, P < 0.001) Parkinson's disease. We hypothesized that treatment with the molecular chaperone ambroxol hydrochloride would improve these biochemical abnormalities. Treatment with ambroxol hydrochloride increased glucosylceramidase activity in fibroblasts from healthy controls, Gaucher disease and heterozygous glucocerebrosidase mutation carriers with and without Parkinson's disease. This was associated with a significant reduction in dihydroethidium oxidation rate of ∼50% (P < 0.05) in fibroblasts from controls, Gaucher disease and heterozygous mutation carriers with and without Parkinson's disease. In conclusion, glucocerebrosidase mutations are associated with reductions in glucosylceramidase activity and evidence of oxidative stress. Ambroxol treatment significantly increases glucosylceramidase activity and reduces markers of oxidative stress in cells bearing glucocerebrosidase mutations. We propose that ambroxol hydrochloride should be further investigated as a potential treatment for Parkinson's disease

    Structural behaviour of stud shear connections in composite floors with various connector arrangements and profiled deck configurations

    Get PDF
    This paper investigates the structural behaviour of stud shear connections in composite floors with various connector arrangements and profiled deck configurations. The numerical investigation adopts a number of advanced finite element models which have been carefully calibrated against standard push-out tests conducted by the authors. In order to capture the complex interactions that take place between the concrete and the headed shear studs, a number of distinctive load transfer mechanisms within the solid concrete and the profiled composite slabs are identified and discussed. Detailed parametric studies are then undertaken using the calibrated models for the purpose of quantifying the shear resistance and deformation characteristics for connections with various stud and deck arrangements. A configuration parameter β is proposed for use in conjunction with the reduction factor kt given in EN 1994-1-1 to incorporate the effects of installation positions of headed shear studs and trough widths of profiled decks as well as the presence of longitudinal stiffeners if any. It is shown that the values of β are in the range of 0.55 to 1.0, which are significantly smaller than those commonly allowed for in the design of stud shear connections in composite floors

    Human Bocavirus NS1 and NS1-70 Proteins Inhibit TNF-α-Mediated Activation of NF-κB by targeting p65.

    Get PDF
    Human bocavirus (HBoV), a parvovirus, is a single-stranded DNA etiologic agent causing lower respiratory tract infections in young children worldwide. Nuclear factor kappa B (NF-κB) transcription factors play crucial roles in clearance of invading viruses through activation of many physiological processes. Previous investigation showed that HBoV infection could significantly upregulate the level of TNF-α which is a strong NF-κB stimulator. Here we investigated whether HBoV proteins modulate TNF-α-mediated activation of the NF-κB signaling pathway. We showed that HBoV NS1 and NS1-70 proteins blocked NF-κB activation in response to TNF-α. Overexpression of TNF receptor-associated factor 2 (TRAF2)-, IκB kinase alpha (IKKα)-, IκB kinase beta (IKKβ)-, constitutively active mutant of IKKβ (IKKβ SS/EE)-, or p65-induced NF-κB activation was inhibited by NS1 and NS1-70. Furthermore, NS1 and NS1-70 didn't interfere with TNF-α-mediated IκBα phosphorylation and degradation, nor p65 nuclear translocation. Coimmunoprecipitation assays confirmed the interaction of both NS1 and NS1-70 with p65. Of note, NS1 but not NS1-70 inhibited TNF-α-mediated p65 phosphorylation at ser536. Our findings together indicate that HBoV NS1 and NS1-70 inhibit NF-κB activation. This is the first time that HBoV has been shown to inhibit NF-κB activation, revealing a potential immune-evasion mechanism that is likely important for HBoV pathogenesis

    Neuroimaging Evidence of Major Morpho-Anatomical and Functional Abnormalities in the BTBR T+TF/J Mouse Model of Autism

    Get PDF
    BTBR T+tf/J (BTBR) mice display prominent behavioural deficits analogous to the defining symptoms of autism, a feature that has prompted a widespread use of the model in preclinical autism research. Because neuro-behavioural traits are described with respect to reference populations, multiple investigators have examined and described the behaviour of BTBR mice against that exhibited by C57BL/6J (B6), a mouse line characterised by high sociability and low self-grooming. In an attempt to probe the translational relevance of this comparison for autism research, we used Magnetic Resonance Imaging (MRI) to map in both strain multiple morpho-anatomical and functional neuroimaging readouts that have been extensively used in patient populations. Diffusion tensor tractography confirmed previous reports of callosal agenesis and lack of hippocampal commissure in BTBR mice, and revealed a concomitant rostro-caudal reorganisation of major cortical white matter bundles. Intact inter-hemispheric tracts were found in the anterior commissure, ventro-medial thalamus, and in a strain-specific white matter formation located above the third ventricle. BTBR also exhibited decreased fronto-cortical, occipital and thalamic gray matter volume and widespread reductions in cortical thickness with respect to control B6 mice. Foci of increased gray matter volume and thickness were observed in the medial prefrontal and insular cortex. Mapping of resting-state brain activity using cerebral blood volume weighted fMRI revealed reduced cortico-thalamic function together with foci of increased activity in the hypothalamus and dorsal hippocampus of BTBR mice. Collectively, our results show pronounced functional and structural abnormalities in the brain of BTBR mice with respect to control B6 mice. The large and widespread white and gray matter abnormalities observed do not appear to be representative of the neuroanatomical alterations typically observed in autistic patients. The presence of reduced fronto-cortical metabolism is of potential translational relevance, as this feature recapitulates previously-reported clinical observations

    Fully gapped topological surface states in Bi2_2Se3_3 films induced by a d-wave high-temperature superconductor

    Full text link
    Topological insulators are a new class of materials, that exhibit robust gapless surface states protected by time-reversal symmetry. The interplay between such symmetry-protected topological surface states and symmetry-broken states (e.g. superconductivity) provides a platform for exploring novel quantum phenomena and new functionalities, such as 1D chiral or helical gapless Majorana fermions, and Majorana zero modes which may find application in fault-tolerant quantum computation. Inducing superconductivity on topological surface states is a prerequisite for their experimental realization. Here by growing high quality topological insulator Bi2_2Se3_3 films on a d-wave superconductor Bi2_2Sr2_2CaCu2_2O8+δ_{8+\delta} using molecular beam epitaxy, we are able to induce high temperature superconductivity on the surface states of Bi2_2Se3_3 films with a large pairing gap up to 15 meV. Interestingly, distinct from the d-wave pairing of Bi2_2Sr2_2CaCu2_2O8+δ_{8+\delta}, the proximity-induced gap on the surface states is nearly isotropic and consistent with predominant s-wave pairing as revealed by angle-resolved photoemission spectroscopy. Our work could provide a critical step toward the realization of the long sought-after Majorana zero modes.Comment: Nature Physics, DOI:10.1038/nphys274

    Evolution and Dynamics of Regulatory Architectures Controlling Polymyxin B Resistance in Enteric Bacteria

    Get PDF
    Complex genetic networks consist of structural modules that determine the levels and timing of a cellular response. While the functional properties of the regulatory architectures that make up these modules have been extensively studied, the evolutionary history of regulatory architectures has remained largely unexplored. Here, we investigate the transition between direct and indirect regulatory pathways governing inducible resistance to the antibiotic polymyxin B in enteric bacteria. We identify a novel regulatory architecture—designated feedforward connector loop—that relies on a regulatory protein that connects signal transduction systems post-translationally, allowing one system to respond to a signal activating another system. The feedforward connector loop is characterized by rapid activation, slow deactivation, and elevated mRNA expression levels in comparison with the direct regulation circuit. Our results suggest that, both functionally and evolutionarily, the feedforward connector loop is the transitional stage between direct transcriptional control and indirect regulation

    The pharmacological regulation of cellular mitophagy

    Get PDF
    Small molecules are pharmacological tools of considerable value for dissecting complex biological processes and identifying potential therapeutic interventions. Recently, the cellular quality-control process of mitophagy has attracted considerable research interest; however, the limited availability of suitable chemical probes has restricted our understanding of the molecular mechanisms involved. Current approaches to initiate mitophagy include acute dissipation of the mitochondrial membrane potential (ΔΨm) by mitochondrial uncouplers (for example, FCCP/CCCP) and the use of antimycin A and oligomycin to impair respiration. Both approaches impair mitochondrial homeostasis and therefore limit the scope for dissection of subtle, bioenergy-related regulatory phenomena. Recently, novel mitophagy activators acting independently of the respiration collapse have been reported, offering new opportunities to understand the process and potential for therapeutic exploitation. We have summarized the current status of mitophagy modulators and analyzed the available chemical tools, commenting on their advantages, limitations and current applications

    A dual function of SnRK2 kinases in the regulation of SnRK1 and plant growth

    Get PDF
    [EN] Adverse environmental conditions trigger responses in plants that promote stress tolerance and survival at the expense of growth(1). However, little is known of how stress signalling pathways interact with each other and with growth regulatory components to balance growth and stress responses. Here, we show that plant growth is largely regulated by the interplay between the evolutionarily conserved energy-sensing SNF1-related protein kinase 1 (SnRK1) protein kinase and the abscisic acid (ABA) phytohormone pathway. While SnRK2 kinases are main drivers of ABA-triggered stress responses, we uncover an unexpected growth-promoting function of these kinases in the absence of ABA as repressors of SnRK1. Sequestration of SnRK1 by SnRK2-containing complexes inhibits SnRK1 signalling, thereby allowing target of rapamycin (TOR) activity and growth under optimal conditions. On the other hand, these complexes are essential for releasing and activating SnRK1 in response to ABA, leading to the inhibition of TOR and growth under stress. This dual regulation of SnRK1 by SnRK2 kinases couples growth control with environmental factors typical for the terrestrial habitat and is likely to have been critical for the water-to-land transition of plants.We thank J.-K. Zhu for the snrk2 mutants, M. Bennett for the SnRK2.2-GFP line, C. Koncz for the SnRK1-GFP line, X. Li for the SnRK2.3-FLAG OE line, J. Schroeder for the GFP-His-FLAG and SnRK2.6-His-FLAG OE lines, C. Mackintosh for the TPS5 antibody and the Nottingham Arabidopsis stock centre for T-DNA mutant seeds. The IGC Plant Facility (Vera Nunes) is thanked for excellent plant care. This work was supported by Fundacao para a Ciencia e a Tecnologia through the R&D Units UIDB/04551/2020 (GREEN-IT-Bioresources for Sustainability) and UID/MAR/04292/2019, FCT project nos. PTDC/BIA-PLA/7143/2014, LISBOA-01-0145-FEDER-028128 and PTDC/BIA-BID/32347/2017, and FCT fellowships/contract nos. SFRH/BD/122736/2016 (M.A.), SFRH/BPD/109336/2015 (A.C.), PD/BD/150239/2019 (D.R.B.), and IF/00804/2013 (E.B.G.). Work in P.L.R.'s laboratory was funded by MCIU grant no. BIO2017-82503-R. C.M. thanks the LabEx Paris Saclay Plant Sciences-SPS (ANR-10-LABX-040-SPS) for support. B.B.P. was funded by Programa VALi+d GVA APOSTD/2017/039. This project has received funding from the European Union Horizon 2020 research and innovation programme (grant agreement no. 867426-ABA-GrowthBalance-H2020-WF-2018-2020/H2020-WF-01-2018, awarded to B.B.P.). This work is dedicated to the memory of our beloved friend and colleague Americo Rodrigues.Belda-Palazón, B.; Adamo, M.; Valerio, C.; Ferreira, LJ.; Confraria, A.; Reis-Barata, D.; Rodrigues, A.... (2020). A dual function of SnRK2 kinases in the regulation of SnRK1 and plant growth. Nature Plants (Online). 6(11):1345-1353. https://doi.org/10.1038/s41477-020-00778-wS13451353611Huot, B., Yao, J., Montgomery, B. L. & He, S. Y. Growth-defense tradeoffs in plants: a balancing act to optimize fitness. Mol. Plant 7, 1267–1287 (2014).Baena-Gonzalez, E., Rolland, F., Thevelein, J. M. & Sheen, J. A central integrator of transcription networks in plant stress and energy signalling. Nature 448, 938–942 (2007).Baena-Gonzalez, E. & Sheen, J. Convergent energy and stress signaling. Trends Plant Sci. 13, 474–482 (2008).Nukarinen, E. et al. Quantitative phosphoproteomics reveals the role of the AMPK plant ortholog SnRK1 as a metabolic master regulator under energy deprivation. Sci. Rep. 6, 31697 (2016).Rodrigues, A. et al. ABI1 and PP2CA phosphatases are negative regulators of Snf1-related protein kinase1 signaling in Arabidopsis. Plant Cell 25, 3871–3884 (2013).Nakashima, K., Yamaguchi-Shinozaki, K. & Shinozaki, K. The transcriptional regulatory network in the drought response and its crosstalk in abiotic stress responses including drought, cold, and heat. Front. Plant Sci. 5, 170 (2014).Fujii, H., Verslues, P. E. & Zhu, J. K. Identification of two protein kinases required for abscisic acid regulation of seed germination, root growth, and gene expression in Arabidopsis. Plant Cell 19, 485–494 (2007).Mustilli, A. C., Merlot, S., Vavasseur, A., Fenzi, F. & Giraudat, J. Arabidopsis OST1 protein kinase mediates the regulation of stomatal aperture by abscisic acid and acts upstream of reactive oxygen species production. Plant Cell 14, 3089–3099 (2002).Umezawa, T. et al. Type 2C protein phosphatases directly regulate abscisic acid-activated protein kinases in Arabidopsis. Proc. Natl Acad. Sci. USA 106, 17588–17593 (2009).Vlad, F. et al. Protein phosphatases 2C regulate the activation of the Snf1-related kinase OST1 by abscisic acid in Arabidopsis. Plant Cell 21, 3170–3184 (2009).Yoshida, R. et al. The regulatory domain of SRK2E/OST1/SnRK2.6 interacts with ABI1 and integrates abscisic acid (ABA) and osmotic stress signals controlling stomatal closure in Arabidopsis. J. Biol. Chem. 281, 5310–5318 (2006).Ma, Y. et al. Regulators of PP2C phosphatase activity function as abscisic acid sensors. Science 324, 1064–1068 (2009).Park, S. Y. et al. Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins. Science 324, 1068–1071 (2009).Bitrian, M., Roodbarkelari, F., Horvath, M. & Koncz, C. BAC-recombineering for studying plant gene regulation: developmental control and cellular localization of SnRK1 kinase subunits. Plant J. 65, 829–842 (2011).Jossier, M. et al. SnRK1 (SNF1-related kinase 1) has a central role in sugar and ABA signalling in Arabidopsis thaliana. Plant J. 59, 316–328 (2009).Lin, C. R. et al. SnRK1A-interacting negative regulators modulate the nutrient starvation signaling sensor SnRK1 in source-sink communication in cereal seedlings under abiotic stress. Plant Cell 26, 808–27 (2014).Lu, C. A. et al. The SnRK1A protein kinase plays a key role in sugar signaling during germination and seedling growth of rice. Plant Cell 19, 2484–2499 (2007).Radchuk, R. et al. Sucrose non-fermenting kinase 1 (SnRK1) coordinates metabolic and hormonal signals during pea cotyledon growth and differentiation. Plant J. 61, 324–338 (2010).Radchuk, R., Radchuk, V., Weschke, W., Borisjuk, L. & Weber, H. Repressing the expression of the SUCROSE NONFERMENTING-1-RELATED PROTEIN KINASE gene in pea embryo causes pleiotropic defects of maturation similar to an abscisic acid-insensitive phenotype. Plant Physiol. 140, 263–278 (2006).Tsai, A. Y. & Gazzarrini, S. AKIN10 and FUSCA3 interact to control lateral organ development and phase transitions in Arabidopsis. Plant J. 69, 809–821 (2012).Tsai, A. Y. & Gazzarrini, S. Trehalose-6-phosphate and SnRK1 kinases in plant development and signaling: the emerging picture. Front. Plant Sci. 5, 119 (2014).Zhang, Y. et al. Arabidopsis sucrose non-fermenting-1-related protein kinase-1 and calcium-dependent protein kinase phosphorylate conserved target sites in ABA response element binding proteins. Ann. Appl. Biol. 153, 401–409 (2008).Ramon, M. et al. Default activation and nuclear translocation of the plant cellular energy sensor SnRK1 regulate metabolic stress responses and development. Plant Cell 31, 1614–1632 (2019).Lopez-Molina, L., Mongrand, S. & Chua, N. H. A postgermination developmental arrest checkpoint is mediated by abscisic acid and requires the ABI5 transcription factor in Arabidopsis. Proc. Natl Acad. Sci. USA 98, 4782–4787 (2001).Garcia, D. & Shaw, R. J. AMPK: mechanisms of cellular energy sensing and restoration of metabolic balance. Mol. Cell 66, 789–800 (2017).Dobrenel, T. et al. The Arabidopsis TOR kinase specifically regulates the expression of nuclear genes coding for plastidic ribosomal proteins and the phosphorylation of the cytosolic ribosomal protein S6. Front. Plant Sci. 7, 1611 (2016).Wang, P. et al. Reciprocal regulation of the TOR kinase and ABA receptor balances plant growth and stress response. Mol. Cell 69, 100–112 e106 (2018).Van Leene, J. et al. Capturing the phosphorylation and protein interaction landscape of the plant TOR kinase. Nat. Plants 5, 316–327 (2019).Dietrich, D. et al. Root hydrotropism is controlled via a cortex-specific growth mechanism. Nat. Plants 3, 17057 (2017).Wu, Q. et al. Ubiquitin ligases RGLG1 and RGLG5 regulate abscisic acid signaling by controlling the turnover of phosphatase PP2CA. Plant Cell 28, 2178–2196 (2016).Belin, C. et al. Identification of features regulating OST1 kinase activity and OST1 function in guard cells. Plant Physiol. 141, 1316–1327 (2006).Fujii, H. & Zhu, J. K. Arabidopsis mutant deficient in 3 abscisic acid-activated protein kinases reveals critical roles in growth, reproduction, and stress. Proc. Natl Acad. Sci. USA 106, 8380–8385 (2009).Fujita, Y. et al. Three SnRK2 protein kinases are the main positive regulators of abscisic acid signaling in response to water stress in Arabidopsis. Plant Cell Physiol. 50, 2123–2132 (2009).Nakashima, K. et al. Three Arabidopsis SnRK2 protein kinases, SRK2D/SnRK2.2, SRK2E/SnRK2.6/OST1 and SRK2I/SnRK2.3, involved in ABA signaling are essential for the control of seed development and dormancy. Plant Cell Physiol. 50, 1345–1363 (2009).Fujii, H. et al. In vitro reconstitution of an abscisic acid signalling pathway. Nature 462, 660–664 (2009).Shen, W., Reyes, M. I. & Hanley-Bowdoin, L. Arabidopsis protein kinases GRIK1 and GRIK2 specifically activate SnRK1 by phosphorylating its activation loop. Plant Physiol. 150, 996–1005 (2009).Cheng, C. et al. SCFAtPP2-B11 modulates ABA signaling by facilitating SnRK2.3 degradation in Arabidopsis thaliana. PLoS Genet. 13, e1006947 (2017).Harthill, J. E. et al. Phosphorylation and 14-3-3 binding of Arabidopsis trehalose-phosphate synthase 5 in response to 2-deoxyglucose. Plant J. 47, 211–223 (2006).Song, Y. et al. Identification of novel interactors and potential phosphorylation substrates of GsSnRK1 from wild soybean (Glycine soja). Plant Cell Environ. 42, 145–157 (2018).Wang, X., Du, Y. & Yu, D. Trehalose phosphate synthase 5-dependent trehalose metabolism modulates basal defense responses in Arabidopsis thaliana. J. Integr. Plant Biol. 61, 509–527 (2019).Broeckx, T., Hulsmans, S. & Rolland, F. The plant energy sensor: evolutionary conservation and divergence of SnRK1 structure, regulation, and function. J. Exp. Bot. 67, 6215–6252 (2016).Wang, Y. et al. AKINbeta1, a subunit of SnRK1, regulates organic acid metabolism and acts as a global modulator of genes involved in carbon, lipid, and nitrogen metabolism. J. Exp. Bot. 71, 1010–1028 (2020).Yoshida, T. et al. The role of abscisic acid signaling in maintaining the metabolic balance required for Arabidopsis growth under nonstress conditions. Plant Cell 31, 84–105 (2019).Zheng, Z. et al. The protein kinase SnRK2.6 mediates the regulation of sucrose metabolism and plant growth in Arabidopsis. Plant Physiol. 153, 99–113 (2010).Cutler, S. R., Rodriguez, P. L., Finkelstein, R. R. & Abrams, S. R. Abscisic acid: emergence of a core signaling network. Annu Rev. Plant Biol. 61, 651–679 (2010).Kravchenko, A. et al. Mutations in the Arabidopsis Lst8 and Raptor genes encoding partners of the TOR complex, or inhibition of TOR activity decrease abscisic acid (ABA) synthesis. Biochem. Biophys. Res. Commun. 467, 992–997 (2015).Salem, M. A., Li, Y., Wiszniewski, A. & Giavalisco, P. Regulatory-associated protein of TOR (RAPTOR) alters the hormonal and metabolic composition of Arabidopsis seeds, controlling seed morphology, viability and germination potential. Plant J. 92, 525–545 (2017).Bakshi, A. et al. Ectopic expression of Arabidopsis target of rapamycin (AtTOR) improves water-use efficiency and yield potential in rice. Sci. Rep. 7, 42835 (2017).De Smet, I. et al. An abscisic acid-sensitive checkpoint in lateral root development of Arabidopsis. Plant J. 33, 543–555 (2003).Hrabak, E. M. et al. The Arabidopsis CDPK-SnRK superfamily of protein kinases. Plant Physiol. 132, 666–680 (2003).Hauser, F., Waadt, R. & Schroeder, J. I. Evolution of abscisic acid synthesis and signaling mechanisms. Curr. Biol. 21, R346–R355 (2011).Umezawa, T. et al. Molecular basis of the core regulatory network in ABA responses: sensing, signaling and transport. Plant Cell Physiol. 51, 1821–1839 (2010)
    • …
    corecore