296 research outputs found

    Simultaneous model of chlorine dosing and decay in drinking water distribution system and model predictive control application

    Get PDF
    The most commonly applied active disinfectant in drinking water distribution system (DWDS) is free chlorine residual (FCR) in the form of hypochlorous acid and hypochlorite ion. The concentration of FCR decreases along the transport pipeline. Controlled replenishment of chlorine at various sites in DWDS is critical to maintain the FCR in the safe range of 0.2-0.6 ppm. This study proposed a multiple-input multiple-output (MIMO) model (developed in Simulink of Matlab 7.0.1) that simultaneously takes into account chlorine dosing and decay process with the considerations of process disturbances. The model is further implemented into a centralised model predictive control (CMPC) system. The advantages of our CMPC system in controlling multiple outputs are its robustness and short settling time, compared to the conventional process-data-based proportional integral (PI) control strategies. Moreover, the simplicity of this reactive-transport-model-based MIMO control system and the use of Matlab promise an easy adaptation to field test and plant implementation. It addresses an important need in water quality management, particularly for developing countries

    Subatmospheric pressure in a water draining pipeline with an air pocket

    Full text link
    [EN] An air pocket's behaviour inside of a pipeline during transient conditions is of great importance due to its effect on the safety of the hydraulic system and the complexity of modeling its behaviour. The emptying process from water pipelines needs more assessment because the generation of troughs of subatmospheric pressure may lead to serious damage. This research studies the air pocket parameters during an emptying process from a water pipeline. A well-equipped experimental facility was used to measure the pressure and the velocity change throughout the water emptying for different air pocket sizes and valve opening times. The phenomenon was simulated using a one-dimensional (1D) developed model based on the rigid formulation with a non-variable friction factor and a constant pipe diameter. The mathematical model shows good ability in predicting the trough of subatmospheric pressure value as the most important parameter which can affect the safety of hydraulic systems.This work was supported by the Fundacion CEIBA - Gobernacion de Bolivar, Colombia which covered the financial support for the doctoral student, Oscar E. Coronado-Hernandez.Coronado-Hernández, OE.; Fuertes-Miquel, VS.; Besharat, M.; Ramos, HM. (2018). Subatmospheric pressure in a water draining pipeline with an air pocket. Urban Water Journal. 15(4):1-7. https://doi.org/10.1080/1573062X.2018.1475578S1715

    Understanding air release through air valves

    Full text link
    [EN] Water transients with entrapped air can originate large pressure peaks that can severely damage distribution networks. Entrapped air can have a damping or amplifying effect on these undesirable pressure peaks. Unfortunately, the complexity of the phenomenon too often makes it difficult to obtain a fully reliable prediction about when air pockets will mitigate or accentuate water transients. Furthermore, the value of some of the parameters involved in the conventional numerical models cannot be calculated or measured and need to be determined through a calibration process. With the aim of overcoming most of the aforementioned uncertainties, this paper summarizes a complete set of tests conducted at WL | Delft Hydraulics. These tests were simulated by means of a tailored numerical model that includes a set of parameters whose values were determined by means of a calibration process. The experimental setup, a large-scale facility, consisted of a single steep pipeline with an air valve installed at its top end. Air release through different air valves was tested under different conditions. © 2011 American Society of Civil Engineers.This research has been possible thanks to the European Community Programme "Access to Major Research Infrastructure" under the Fifth Framework Growth Programme (Contract No. GIRT-CT-2002-05069).Carlos Alberola, MDM.; Arregui De La Cruz, F.; Cabrera Marcet, E.; Palau, C. (2011). Understanding air release through air valves. Journal of Urban Planning and Development. 137(4):461-469. doi:10.1061/(ASCE)HY.1943-7900.0000324S461469137

    Review and Evaluation of the J100â 10 Risk and Resilience Management Standard for Water and Wastewater Systems

    Full text link
    Risk analysis standards are often employed to protect critical infrastructures, which are vital to a nation’s security, economy, and safety of its citizens. We present an analysis framework for evaluating such standards and apply it to the J100â 10 risk analysis standard for water and wastewater systems. In doing so, we identify gaps between practices recommended in the standard and the state of the art. While individual processes found within infrastructure risk analysis standards have been evaluated in the past, we present a foundational review and focus specifically on water systems. By highlighting both the conceptual shortcomings and practical limitations, we aim to prioritize the shortcomings needed to be addressed. Key findings from this study include (1) risk definitions fail to address notions of uncertainty, (2) the sole use of â worst reasonable caseâ assumptions can lead to mischaracterizations of risk, (3) analysis of risk and resilience at the threatâ asset resolution ignores dependencies within the system, and (4) stakeholder values need to be assessed when balancing the tradeoffs between risk reduction and resilience enhancement.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/154262/1/risa13421_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/154262/2/risa13421.pd

    Defining complementary tools to the IVI. The Infrastructure Degradation Index (IDI) and the Infrastructure Histogram (HI)

    Full text link
    [EN] The Infrastructure Value Index (IVI) is quickly becoming a standard as a valuable tool to quickly assess the state of urban water infrastructure. However, its simple nature (as a single metric) can mask some valuable information and lead to erroneous conclusions. This paper introduces two complementary tools to IVI: The Infrastructure Degradation Index (IDI) and the Infrastructure Histogram (HI). The IDI is focused on time (compared to the IVI, focused on value), represents an intuitive concept and behaves in a linear way. The joint analysis of IVI and IDI provides results in a more complete understanding of the state of the assets, while maintaining the simplicity of the tools. The Infrastructure Histogram allows for a full evaluation of the infrastructure state and provides a detailed picture of network age compared to its expected life, as well as an order of magnitude of the required investments in the following years.Cabrera Rochera, E.; Estruch-Juan, ME.; Gomez Selles, E.; Del Teso-March, R. (2019). Defining complementary tools to the IVI. The Infrastructure Degradation Index (IDI) and the Infrastructure Histogram (HI). Urban Water Journal. 16(5):343-352. https://doi.org/10.1080/1573062X.2019.1669195S343352165Alegre, H., Vitorino, D., & Coelho, S. (2014). Infrastructure Value Index: A Powerful Modelling Tool for Combined Long-term Planning of Linear and Vertical Assets. Procedia Engineering, 89, 1428-1436. doi:10.1016/j.proeng.2014.11.469Amaral, R., Alegre, H., & Matos, J. S. (2016). A service-oriented approach to assessing the infrastructure value index. Water Science and Technology, 74(2), 542-548. doi:10.2166/wst.2016.250Aware-p.org. 2014. “AWARE-P/Software.” Accessed 25 November 2018. http://www.aware-p.org/np4/software/Baseform. 2018. “Baseform.” Accessed 24 November 2018. https://baseform.com/np4/productCanal de Isabel II Gestión. 2012. Normas Para Redes de Abastecimiento. [Standards for Water Supply Networks.]. https://www.canalgestion.es/es/galeria_ficheros/pie/normativa/normativa/Normas_redes_abastecimiento2012_CYIIG.pdfFrost, and Sullivan. 2011. “Western European Water and Wastewater Utilities Market.” https://store.frost.com/western-european-water-and-wastewater-utilities-market.html#section1Leitão, J. P., Coelho, S. T., Alegre, H., Cardoso, M. A., Silva, M. S., Ramalho, P., … Carriço, N. (2014). Moving urban water infrastructure asset management from science into practice. Urban Water Journal, 13(2), 133-141. doi:10.1080/1573062x.2014.939092Marchionni, V., Cabral, M., Amado, C., & Covas, D. (2016). Estimating Water Supply Infrastructure Cost Using Regression Techniques. Journal of Water Resources Planning and Management, 142(4), 04016003. doi:10.1061/(asce)wr.1943-5452.0000627Marchionni, V., Lopes, N., Mamouros, L., & Covas, D. (2014). Modelling Sewer Systems Costs with Multiple Linear Regression. Water Resources Management, 28(13), 4415-4431. doi:10.1007/s11269-014-0759-zPulido-Velazquez, M., Cabrera Marcet, E., & Garrido Colmenero, A. (2014). Economía del agua y gestión de recursos hídricos. Ingeniería del agua, 18(1), 95. doi:10.4995/ia.2014.3160Rokstad, M. M., Ugarelli, R. M., & Sægrov, S. (2015). Improving data collection strategies and infrastructure asset management tool utilisation through cost benefit considerations. Urban Water Journal, 13(7), 710-726. doi:10.1080/1573062x.2015.102469

    Seasonal variation in the nutrient profile of Arthrospira fusiformis biomass harvested from an Ethiopian soda lake, Lake Chitu

    Get PDF
    The extent of seasonal variation in the nutrient profile of Arthrospira biomass harvested from Lake Chitu was investigated to evaluate the variability of the quality of the product over a period of a year. Protein content varied from 47.9 to 55.7% for wet season biomass samples and from 39.2 to 40.8% for dry season samples. Dry season samples were characterized by relatively higher carbohydrate values (38.0–41.3%). Higher proportion of amino acids and unsaturated fatty acids were recorded for biomass harvested in wet season. Similarly, higher contents of phytonutrients (pigments) were recorded for wet season biomass samples: chlorophyll a (8.2–10.3 mg g−1), phycobiliproteins (104.1–120.7 mg g−1), total carotenoids (3.17–4.31 mg g−1), and β-carotene (1.24–1.61 mg g−1). The contents of Na and K were higher for a dry season biomass whereas other major (Ca, P, Mg) and trace (Mn, Fe, Cu, Zn, Se) minerals were found relatively in higher quantities in a wet season biomass. The nutritional composition of Arthrospira from Lake Chitu was found to be relatively comparable to that found in commercial Arthrospira products in the market. The significance of the findings is discussed in relation to potential sustainable production of Arthrospira biomass from this lake

    Internet of Things in Water Management and Treatment

    Get PDF
    The goal of the water security IoT chapter is to present a comprehensive and integrated IoT based approach to environmental quality and monitoring by generating new knowledge and innovative approaches that focus on sustainable resource management. Mainly, this chapter focuses on IoT applications in wastewater and stormwater, and the human and environmental consequences of water contaminants and their treatment. The IoT applications using sensors for sewer and stormwater monitoring across networked landscapes, water quality assessment, treatment, and sustainable management are introduced. The studies of rate limitations in biophysical and geochemical processes that support the ecosystem services related to water quality are presented. The applications of IoT solutions based on these discoveries are also discussed
    corecore