70 research outputs found
Assembly PCR synthesis of optimally designed, compact, multi-responsive promoters suited to gene therapy application
MRC-DTA studentship award
British Pharmacological Society Integrative Awar
A novel hybrid promoter responsive to pathophysiological and pharmacological regulation
The aim of this study was to construct a promoter containing DNA motifs for an endogenous transcription factor associated with inflammation along with motifs for pharmacological regulation factors. We demonstrate in transfected cells that expression of a gene of interest is induced by hypoxic conditions or through pharmacological induction, and also show pharmacological repression. In vivo studies utilised electroporation of plasmid to mouse paws, a delivery method shown to be effective by bioluminescence imaging. For gene therapy, the promoter was used to drive expression of IL-1Ra in a paw inflammation model with therapeutic effect observed which was further enhanced when the promoter was additionally induced with a pharmacological activator. One of the most important observations from this study was that promoter induction by hypoxia or inflammation could be prevented by the pharmacological repressor in the absence of doxycycline. These studies demonstrate that hybrid promoters enable pharmacological adjustment to the pathophysiological level of gene expression and, importantly, that they allow termination of gene expression even in the presence of pathophysiological stimuli
The Min System and Nucleoid Occlusion Are Not Required for Identifying the Division Site in Bacillus subtilis but Ensure Its Efficient Utilization
Precise temporal and spatial control of cell division is essential for progeny survival. The current general view is that precise positioning of the division site at midcell in rod-shaped bacteria is a result of the combined action of the Min system and nucleoid (chromosome) occlusion. Both systems prevent assembly of the cytokinetic Z ring at inappropriate places in the cell, restricting Z rings to the correct site at midcell. Here we show that in the bacterium Bacillus subtilis Z rings are positioned precisely at midcell in the complete absence of both these systems, revealing the existence of a mechanism independent of Min and nucleoid occlusion that identifies midcell in this organism. We further show that Z ring assembly at midcell is delayed in the absence of Min and Noc proteins, while at the same time FtsZ accumulates at other potential division sites. This suggests that a major role for Min and Noc is to ensure efficient utilization of the midcell division site by preventing Z ring assembly at potential division sites, including the cell poles. Our data lead us to propose a model in which spatial regulation of division in B. subtilis involves identification of the division site at midcell that requires Min and nucleoid occlusion to ensure efficient Z ring assembly there and only there, at the right time in the cell cycle
Polar Flagellar Biosynthesis and a Regulator of Flagellar Number Influence Spatial Parameters of Cell Division in Campylobacter jejuni
Spatial and numerical regulation of flagellar biosynthesis results in different flagellation patterns specific for each bacterial species. Campylobacter jejuni produces amphitrichous (bipolar) flagella to result in a single flagellum at both poles. These flagella confer swimming motility and a distinctive darting motility necessary for infection of humans to cause diarrheal disease and animals to promote commensalism. In addition to flagellation, symmetrical cell division is spatially regulated so that the divisome forms near the cellular midpoint. We have identified an unprecedented system for spatially regulating cell division in C. jejuni composed by FlhG, a regulator of flagellar number in polar flagellates, and components of amphitrichous flagella. Similar to its role in other polarly-flagellated bacteria, we found that FlhG regulates flagellar biosynthesis to limit poles of C. jejuni to one flagellum. Furthermore, we discovered that FlhG negatively influences the ability of FtsZ to initiate cell division. Through analysis of specific flagellar mutants, we discovered that components of the motor and switch complex of amphitrichous flagella are required with FlhG to specifically inhibit division at poles. Without FlhG or specific motor and switch complex proteins, cell division occurs more often at polar regions to form minicells. Our findings suggest a new understanding for the biological requirement of the amphitrichous flagellation pattern in bacteria that extend beyond motility, virulence, and colonization. We propose that amphitrichous bacteria such as Campylobacter species advantageously exploit placement of flagella at both poles to spatially regulate an FlhG-dependent mechanism to inhibit polar cell division, thereby encouraging symmetrical cell division to generate the greatest number of viable offspring. Furthermore, we found that other polarly-flagellated bacteria produce FlhG proteins that influence cell division, suggesting that FlhG and polar flagella may function together in a broad range of bacteria to spatially regulate division
Studies on the impact of mixing in brewing fermentation - Comparison of methods of effecting enhanced liquid circulation
Mixing during beer production by natural CO2 evolution has been enhanced at the bench scale by headspace gas recirculation to the base of a 3.51 cylindroconical fermenter or by mechanical agitation in a 41 fermenter. Standardized lager fermentations were used to compare the two methods at a range of mean specific energy dissipation rates (ε̄T, W kg-1), including ∼5 × 10-2 W kg-1. The latter corresponds approximately to the maximum ε̄T found at the production scale (∼400 m3) due to natural CO2 evolution. The work has shown that gas recirculation is a viable technique that avoids the loss of volatiles found if mixing is enhanced by sparging a separate gas such as nitrogen. For both types of mixing, it was found that ε̄T resulted in increased yeast growth and fermentation rates and an alteration in the balance of key volatile compounds, with, in general, an enhanced formation of higher alcohols and a suppression of the formation of esters. However, with gas recirculation this enhanced performance was limited to an ε̄T of ∼5 × 10-2 W kg-1 because of the tendency for excessive foaming at higher recirculation rates, whilst values up to ∼2.5 × 10-2 W kg-1 proved effective under agitated conditions. On comparison, at an ε̄T of ∼5 × 10-2 W kg-1, the two modes of operation gave similar results, although gas recirculation produced a slightly increased fermentation rate. The possible reasons for this are briefly discussed. Both methods seem to have the potential for reducing fermentation time and enhancing reproducibility, especially at the small scale
Overproduction of acyloxyacyl hydrolase by macrophages and dendritic cells prevents prolonged reactions to bacterial lipopolysaccharide in vivo.
Although recognition of lipopolysaccharide (LPS) by the myeloid differentiation factor 2-Toll-like receptor 4 complex is important for triggering protective inflammatory responses in animals, terminating many of these responses requires LPS inactivation by a host lipase, acyloxyacyl hydrolase (AOAH). To test whether endogenously produced recombinant AOAH can modulate responses to LPS and gram-negative bacteria, we engineered transgenic mice that overexpress AOAH in dendritic cells and macrophages, cell types that normally produce it. Transgenic mice deacylated LPS more rapidly than did wild-type controls. They also were protected from LPS-induced hepatosplenomegaly, recovered more quickly from LPS-induced weight loss, and were more likely to survive when challenged with live Escherichia coli. Constitutive overexpression of AOAH in vivo hastened recovery from LPS exposure without interfering with the normal acute inflammatory response to this important microbial signal molecule. Our results suggest that the extent to which macrophages and dendritic cells produce AOAH may influence the outcome of many gram-negative bacterial diseases
Bacterial motility complexes require the actin-like protein, MreB and the Ras homologue, MglA
Gliding motility in the bacterium Myxococcus xanthus uses two motility engines: S-motility powered by type-IV pili and A-motility powered by uncharacterized motor proteins and focal adhesion complexes. In this paper, we identified MreB, an actin-like protein, and MglA, a small GTPase of the Ras superfamily, as essential for both motility systems. A22, an inhibitor of MreB cytoskeleton assembly, reversibly inhibited S- and A-motility, causing rapid dispersal of S- and A-motility protein clusters, FrzS and AglZ. This suggests that the MreB cytoskeleton is involved in directing the positioning of these proteins. We also found that a ΔmglA motility mutant showed defective localization of AglZ and FrzS clusters. Interestingly, MglA–YFP localization mimicked both FrzS and AglZ patterns and was perturbed by A22 treatment, consistent with results indicating that both MglA and MreB bind to motility complexes. We propose that MglA and the MreB cytoskeleton act together in a pathway to localize motility proteins such as AglZ and FrzS to assemble the A-motility machineries. Interestingly, M. xanthus motility systems, like eukaryotic systems, use an actin-like protein and a small GTPase spatial regulator
- …
