53 research outputs found

    The effect of immunomodulators on the immunogenicity of TNF-blocking therapeutic monoclonal antibodies: a review

    Get PDF
    Therapeutic monoclonal antibodies have revolutionized the treatment of various inflammatory diseases. Immunogenicity against these antibodies has been shown to be clinically important: it is associated with shorter response duration because of diminishing concentrations in the blood and with infusion reactions. Concomitant immunomodulators in the form of methotrexate or azathioprine reduced the immunogenicity of therapeutic antibodies in rheumatoid arthritis, Crohn disease, and juvenile idiopathic arthritis. The occurrence of adverse events does not increase when immunomodulators are added to therapeutic antibodies. The mechanism whereby methotrexate and azathioprine influence immunogenicity remains unclear. Evidence-based consensus on prescribing concomitant immunomodulators is needed

    Impact of early applied upper limb stimulation: The EXPLICIT-stroke programme design

    Get PDF
    Main claims of the literature are that functional recovery of the paretic upper limb is mainly defined within the first month post stroke and that rehabilitation services should preferably be applied intensively and in a task-oriented way within this particular time window. EXplaining PLastICITy after stroke (acronym EXPLICIT-stroke) aims to explore the underlying mechanisms of post stroke upper limb recovery. Two randomized single blinded trials form the core of the programme, investigating the effects of early modified Constraint-Induced Movement Therapy (modified CIMT) and EMG-triggered Neuro-Muscular Stimulation (EMG-NMS) in patients with respectively a favourable or poor probability for recovery of dexterity.BioMechanical EngineeringMechanical, Maritime and Materials Engineerin

    TWEAK and Fn14 expression in the pathogenesis of joint inflammation and bone erosion in rheumatoid arthritis

    Get PDF
    Extent: 10p.INTRODUCTION: TNF-like weak inducer of apoptosis (TWEAK) has been proposed as a mediator of inflammation and bone erosion in rheumatoid arthritis (RA). This study aimed to investigate TWEAK and TWEAK receptor (Fn14) expression in synovial tissue from patients with active and inactive rheumatoid arthritis (RA), osteoarthritis (OA) and normal controls and assess soluble (s)TWEAK levels in the synovial fluids from patients with active RA and OA. Effects of sTWEAK on osteoclasts and osteoblasts were investigated in vitro. METHODS: TWEAK and Fn14 expression were detected in synovial tissues by immunohistochemistry (IHC). Selected tissues were dual labelled with antibodies specific for TWEAK and lineage-selective cell surface markers CD68, Tryptase G, CD22 and CD38. TWEAK mRNA expression was examined in human peripheral blood mononuclear cells (PBMC) sorted on the basis of their expression of CD22. sTWEAK was detected in synovial fluid from OA and RA patients by ELISA. The effect of sTWEAK on PBMC and RAW 264.7 osteoclastogenesis was examined. The effect of sTWEAK on cell surface receptor activator of NF Kappa B Ligand (RANKL) expression by human osteoblasts was determined by flow cytometry. RESULTS: TWEAK and Fn14 expression were significantly higher in synovial tissue from all patient groups compared to the synovial tissue from control subjects (P < 0.05). TWEAK was significantly higher in active compared with inactive RA tissues (P < 0.05). TWEAK expression co-localised with a subset of CD38+ plasma cells and with CD22+ B-lymphocytes in RA tissues. Abundant TWEAK mRNA expression was detected in normal human CD22+ B cells. Higher levels of sTWEAK were observed in synovial fluids isolated from active RA compared with OA patients. sTWEAK did not stimulate osteoclast formation directly from PBMC, however, sTWEAK induced the surface expression of RANKL by human immature, STRO-1+ osteoblasts. CONCLUSIONS: The expression of TWEAK by CD22+ B cells and CD38+ plasma cells in RA synovium represents a novel potential pathogenic pathway. High levels of sTWEAK in active RA synovial fluid and of TWEAK and Fn14 in active RA tissue, together with the effect of TWEAK to induce osteoblastic RANKL expression, is consistent with TWEAK/Fn14 signalling being important in the pathogenesis of inflammation and bone erosion in RA.Anak A. S. S. K. Dharmapatni, Malcolm D. Smith, Tania N. Crotti, Christopher A. Holding, Cristina Vincent, Helen M. Weedon, Andrew C. W. Zannettino, Timothy S. Zheng, David M. Findlay, Gerald J. Atkins and David R. Hayne

    Advances in rheumatology: new targeted therapeutics

    Get PDF
    Treatment of inflammatory arthritides - including rheumatoid arthritis, ankylosing spondylitis, and psoriatic arthritis - has seen much progress in recent years, partially due to increased understanding of the pathogenesis of these diseases at the cellular and molecular levels. These conditions share some common mechanisms. Biologic therapies have provided a clear advance in the treatment of rheumatological conditions. Currently available TNF-targeting biologic agents that are licensed for at east one of the above-named diseases are etanercept, infliximab, adalimumab, golimumab, and certolizumab. Biologic agents with a different mechanism of action have also been approved in rheumatoid arthritis (rituximab, abatacept, and tocilizumab). Although these biologic agents are highly effective, there is a need for improved management strategies. There is also a need for education of family physicians and other healthcare professionals in the identification of early symptoms of inflammatory arthritides and the importance of early referral to rheumatologists for diagnosis and treatment. Also, researchers are developing molecules - for example, the Janus kinase inhibitor CP-690550 (tofacitinib) and the spleen tyrosine kinase inhibitor R788 (fostamatinib) - to target other aspects of the inflammatory cascade. Initial trial results with new agents are promising, and, in time, head-to-head trials will establish the best treatment options for patients. The key challenge is identifying how best to integrate these new, advanced therapies into daily practice

    Protection from ultraviolet damage and photocarcinogenesis by vitamin d compounds

    Get PDF
    © Springer Nature Switzerland AG 2020. Exposure of skin cells to UV radiation results in DNA damage, which if inadequately repaired, may cause mutations. UV-induced DNA damage and reactive oxygen and nitrogen species also cause local and systemic suppression of the adaptive immune system. Together, these changes underpin the development of skin tumours. The hormone derived from vitamin D, calcitriol (1,25-dihydroxyvitamin D3) and other related compounds, working via the vitamin D receptor and at least in part through endoplasmic reticulum protein 57 (ERp57), reduce cyclobutane pyrimidine dimers and oxidative DNA damage in keratinocytes and other skin cell types after UV. Calcitriol and related compounds enhance DNA repair in keratinocytes, in part through decreased reactive oxygen species, increased p53 expression and/or activation, increased repair proteins and increased energy availability in the cell when calcitriol is present after UV exposure. There is mitochondrial damage in keratinocytes after UV. In the presence of calcitriol, but not vehicle, glycolysis is increased after UV, along with increased energy-conserving autophagy and changes consistent with enhanced mitophagy. Reduced DNA damage and reduced ROS/RNS should help reduce UV-induced immune suppression. Reduced UV immune suppression is observed after topical treatment with calcitriol and related compounds in hairless mice. These protective effects of calcitriol and related compounds presumably contribute to the observed reduction in skin tumour formation in mice after chronic exposure to UV followed by topical post-irradiation treatment with calcitriol and some, though not all, related compounds

    Guidelines for management of ischaemic stroke and transient ischaemic attack 2008

    Get PDF
    This article represents the update of the European Stroke Initiative Recommendations for Stroke Management. These guidelines cover both ischaemic stroke and transient ischaemic attacks, which are now considered to be a single entity. The article covers referral and emergency management, Stroke Unit service, diagnostics, primary and secondary prevention, general stroke treatment, specific treatment including acute management, management of complications, and rehabilitation
    • …
    corecore