10 research outputs found

    Postsynaptic density protein transcripts are differentially modulated by minocycline alone or in add-on to haloperidol: Implications for treatment resistant schizophrenia

    No full text
    In this study, we investigated whether minocycline, a second-generation tetracycline proposed as an add-on to antipsychotics in treatment-resistant schizophrenia (TRS), may affect the expression of Homer and Arc postsynaptic density (PSD) transcripts, implicated in synaptic regulation. Minocycline was administered alone or with haloperidol in rats exposed or not to ketamine, mimicking acute glutamatergic psychosis or naturalistic conditions, respectively. Arc expression was significantly reduced by minocycline compared with controls. Minocycline in combination with haloperidol also significantly reduced Arc expression compared with both controls and haloperidol alone. Moreover, haloperidol/minocycline combination significantly affected Arc expression in cortical regions, while haloperidol alone was ineffective on cortical gene expression. These results suggest that minocycline may strongly affect the expression of Arc as mediated by haloperidol, both in terms of quantitative levels and of topography of haloperidol-related expression. It is noteworthy that no significant pre-treatment effect was found, suggesting that pre-exposure to ketamine did not grossly affect gene expression. Minocycline was not found to significantly affect haloperidol-related Homer1a expression. No significant changes in Homer1b/c expression were observed. These results are consistent with previous observations that minocycline may modulate postsynaptic glutamatergic transmission, affecting distinct downstream pathways initiated by N-methyl-D-aspartate (NMDA) receptor modulation, i.e. Arc-mediated but not Homer1a-mediated pathways

    The Glucocorticoid Analog Dexamethasone Alters the Expression and the Distribution of Dopamine Receptors and Enkephalin within Cortico-subcortical Regions.

    No full text
    In humans, glucocorticoid excess may cause neuropsychiatric symptoms, including psychosis and cognitive impairment, and glucocorticoid signaling hyperactivation may sensitize to substance of abuse. The aim of this work was to evaluate whether exposure to glucocorticoid excess triggers molecular changes in dopaminergic and opioidergic systems within relevant forebrain areas. Methods: We acutely exposed Sprague-Dawley rats to dexamethasone, a glucocorticoid analogue, or vehicle and evaluated the mRNA expression of dopamine D1 and D2 receptors and enkephalin within the cortex, the striatum, and the midbrain. Results: Dexamethasone reduced mRNA expression of D1 receptor and enkephalin in the cortex. In the striatum, dexamethasone reduced the expression of D1 receptor mRNA, but not that of D2 receptor and enkephalin. No significant changes in D2 receptor mRNA expression were observed in the midbrain. Basal distribution of D1 and D2 receptor mRNA showed a clear-cut striatal/cortical gradient, while this distribution was less obvious for enkephalin mRNA. Dexamethasone increased the cortico-striatal separation in terms of D1 and D2 receptor mRNA expression. Discussion: These molecular changes may represent adaptive mechanisms to dexamethasone-induced potentiation of dopaminergic and opioidergic transmission, mostly in cortical areas

    Refining of vegetable oils and fats; formation pathway and mitigation of 3-MCPDe and Glycidyl esters

    Full text link
    Cytomegalovirus (CMV) infection represents one of the main cause mortality after Stem Cell Transplantation. Recently, a protective effect of the T allele of rs12979860 IL28B Single Nucleotide Polymorphisms (SNPs) against CMV infection in the allogenic stem cell transplantation was suggested. We investigate whether the rs12979860 IL28B SNP and the relative rs368234815 (IFNλ4) genotype may affect the incidence of active CMV infection in Autologous stem cell transplantation (Auto-SCT) setting. The study included 99 patients who underwent to Auto-SCT. IL28 and IFNΔ4 SNPs were correlated with CMV reactivation along with other clinical and treatment parameters. CMV reactivation by CMV DNAemia was evaluated once a week until day 100 from Auto-SCT. CMV reactivation was documented in 50% (TT-ΔG/ΔG), 35% (CC-TT/TT) and 29.2% (CT-TT/ΔG) of the patients respectively. No differences in CMV copies number were recorded at reactivation between different IL28/IFNλ4 genotypes. The analysis of patients older than 60 years showed a significantly higher incidence of active CMV infection in the TT-ΔG/ΔG (83%) population with respect to CC-TT/TT (21%) and CT-TT/ΔG (40%) patients. Our data suggest a negative role of TT-ΔG/ΔG genotype in the CMV reactivation in Auto-SCT. The exposure to rituximab and the pre-infusion presence of anti CMV IgG also significantly influenced CMV reactivation
    corecore