1,281 research outputs found

    Cosmic Numbers: A Physical Classification for Cosmological Models

    Get PDF
    We introduce the notion of the cosmic numbers of a cosmological model, and discuss how they can be used to naturally classify models according to their ability to solve some of the problems of the standard cosmological model.Comment: 3 pages, no figures. v2: Two references added, cosmetic changes. Version to appear in Phys. Rev. D (Brief reports

    Domain wall network evolution in (N+1)-dimensional FRW universes

    Full text link
    We develop a velocity-dependent one-scale model for the evolution of domain wall networks in flat expanding or collapsing homogeneous and isotropic universes with an arbitrary number of spatial dimensions, finding the corresponding scaling laws in frictionless and friction dominated regimes. We also determine the allowed range of values of the curvature parameter and the expansion exponent for which a linear scaling solution is possible in the frictionless regime.Comment: 5 pages, 2 figure

    Scaling laws for weakly interacting cosmic (super)string and p-brane networks

    Full text link
    In this paper we find new scaling laws for the evolution of pp-brane networks in N+1N+1-dimensional Friedmann-Robertson-Walker universes in the weakly-interacting limit, giving particular emphasis to the case of cosmic superstrings (p=1p=1) living in a universe with three spatial dimensions (N=3). In particular, we show that, during the radiation era, the root-mean-square velocity is vˉ=1/2{\bar v} =1/{\sqrt 2} and the characteristic length of non-interacting cosmic string networks scales as La3/2L \propto a^{3/2} (aa is the scale factor), thus leading to string domination even when gravitational backreaction is taken into account. We demonstrate, however, that a small non-vanishing constant loop chopping efficiency parameter c~\tilde c leads to a linear scaling solution with constant LH1L H \ll 1 (HH is the Hubble parameter) and vˉ1/2{\bar v} \sim 1/{\sqrt 2} in the radiation era, which may allow for a cosmologically relevant cosmic string role even in the case of light strings. We also determine the impact that the radiation-matter transition has on the dynamics of weakly interacting cosmic superstring networks.Comment: 5 pages, 2 figure

    Anthropic versus cosmological solutions to the coincidence problem

    Full text link
    In this paper we investigate possible solutions to the coincidence problem in flat phantom dark energy models with a constant dark energy equation of state and quintessence models with a linear scalar field potential. These models are representative of a broader class of cosmological scenarios in which the universe has a finite lifetime. We show that, in the absence of anthropic constraints, including a prior probability for the models inversely proportional to the total lifetime of the universe excludes models very close to the ΛCDM\Lambda {\rm CDM} model. This relates a cosmological solution to the coincidence problem with a dynamical dark energy component having an equation of state parameter not too close to -1 at the present time. We further show, that anthropic constraints, if they are sufficiently stringent, may solve the coincidence problem without the need for dynamical dark energy.Comment: 7 pages, 7 figure

    String Imprints from a Pre-inflationary Era

    Full text link
    We derive the equations governing the dynamics of cosmic strings in a flat anisotropic universe of Bianchi type I and study the evolution of simple cosmic string loop solutions. We show that the anisotropy of the background can have a characteristic effect in the loop motion. We discuss some cosmological consequences of these findings and, by extrapolating our results to cosmic string networks, we comment on their ability to survive an inflationary epoch, and hence be a possible fossil remnant (still visible today) of an anisotropic phase in the very early universe.Comment: 5 pages, 3 figure

    CMB constraints on spatial variations of the vacuum energy density

    Get PDF
    In a recent article, a simple `spherical bubble' toy model for a spatially varying vacuum energy density was introduced, and type Ia supernovae data was used to constrain it. Here we generalize the model to allow for the fact that we may not necessarily be at the centre of a region with a given set of cosmological parameters, and discuss the constraints on these models coming from Cosmic Microwave Background Radiation data. We find tight constraints on possible spatial variations of the vacuum energy density for any significant deviations from the centre of the bubble and we comment on the relevance of our results.Comment: Minor changes; to appear in Astroparticle Physic

    Evolution of domain wall networks: the PRS algorithm

    Full text link
    The Press-Ryden-Spergel (PRS) algorithm is a modification to the field theory equations of motion, parametrized by two parameters (α\alpha and β\beta), implemented in numerical simulations of cosmological domain wall networks, in order to ensure a fixed comoving resolution. In this paper we explicitly demonstrate that the PRS algorithm provides the correct domain wall dynamics in N+1N+1-dimensional Friedmann-Robertson-Walker (FRW) universes if α+β/2=N\alpha+\beta/2=N, fully validating its use in numerical studies of cosmic domain evolution. We further show that this result is valid for generic thin featureless domain walls, independently of the Lagrangian of the model.Comment: 4 page

    A Supernova Brane Scan

    Get PDF
    We consider a `brane-world scenario' recently introduced by Dvali, Gabadadze and Porrati, and subsequently proposed as an alternative to a cosmological constant in explaining the current acceleration of the universe. We show that, contrary to these claims, this proposal is already strongly disfavoured by the available Type Ia Supernovae, Cosmic Microwave Background and cluster data.Comment: Further cosmetic changes; to appear in The Astrophysical Journal, v56

    Cosmic string loops and large-scale structure

    Get PDF
    We investigate the contribution made by small loops from a cosmic string network as seeds for large-scale structure formation. We show that cosmic string loops are highly correlated with the long-string network on large scales and therefore contribute significantly to the power spectrum of density perturbations if the average loop lifetime is comparable to or above one Hubble time. This effect further improves the large-scale bias problem previously identified in earlier studies of cosmic string models.Comment: 5 pages, 5 figure
    corecore