1,500 research outputs found

    CO2 signaling mediates neurovascular coupling in the cerebral cortex

    Get PDF
    Neurovascular coupling is a fundamental brain mechanism that regulates local cerebral blood flow (CBF) in response to changes in neuronal activity. Functional imaging techniques are commonly used to record these changes in CBF as a proxy of neuronal activity to study the human brain. However, the mechanisms of neurovascular coupling remain incompletely understood. Here we show in experimental animal models (laboratory rats and mice) that the neuronal activity-dependent increases in local CBF in the somatosensory cortex are prevented by saturation of the CO2-sensitive vasodilatory brain mechanism with surplus of exogenous CO2 or disruption of brain CO2/HCO3− transport by genetic knockdown of electrogenic sodium-bicarbonate cotransporter 1 (NBCe1) expression in astrocytes. A systematic review of the literature data shows that CO2 and increased neuronal activity recruit the same vasodilatory signaling pathways. These results and analysis suggest that CO2 mediates signaling between neurons and the cerebral vasculature to regulate brain blood flow in accord with changes in the neuronal activity

    A Critical Role for Purinergic Signalling in the Mechanisms Underlying Generation of BOLD fMRI Responses

    Get PDF
    The mechanisms of neurovascular coupling underlying generation of BOLD fMRI signals remain incompletely understood. It has been proposed that release of vasoactive substances by astrocytes couples neuronal activity to changes in cerebrovascular blood flow. However, the role of astrocytes in fMRI responses remains controversial. Astrocytes communicate via release of ATP, and here we tested the hypothesis that purinergic signaling plays a role in the mechanisms underlying fMRI. An established fMRI paradigm was used to trigger BOLD responses in the forepaw region of the somatosensory cortex (SSFP) of an anesthetized rat. Forepaw stimulation induced release of ATP in the SSFP region. To interfere with purinergic signaling by promoting rapid breakdown of the vesicular and/or released ATP, a lentiviral vector was used to express a potent ectonucleotidase, transmembrane prostatic acid phosphatase (TMPAP), in the SSFP region. TMPAP expression had no effect on resting cerebral blood flow, cerebrovascular reactivity, and neuronal responses to sensory stimulation. However, TMPAP catalytic activity markedly reduced the magnitude of BOLD fMRI responses triggered in the SSFP region by forepaw stimulation. Facilitated ATP breakdown could result in accumulation of adenosine. However, blockade of A1 receptors had no effect on BOLD responses and did not reverse the effect of TMPAP. These results suggest that purinergic signaling plays a significant role in generation of BOLD fMRI signals. We hypothesize that astrocytes activated during periods of enhanced neuronal activity release ATP, which propagates astrocytic activation, stimulates release of vasoactive substances and dilation of cerebral vasculature

    Percentile reference values for anthropometric body composition indices in European children from the IDEFICS study

    Get PDF
    INTRODUCTION: To characterise the nutritional status in children with obesity or wasting conditions, European anthropometric reference values for body composition measures beyond the body mass index (BMI) are needed. Differentiated assessment of body composition in children has long been hampered by the lack of appropriate references. OBJECTIVES: The aim of our study is to provide percentiles for body composition indices in normal weight European children, based on the IDEFICS cohort (Identification and prevention of Dietary-and lifestyle-induced health Effects in Children and infantS). METHODS: Overall 18 745 2.0-10.9-year-old children from eight countries participated in the study. Children classified as overweight/obese or underweight according to IOTF (N = 5915) were excluded from the analysis. Anthropometric measurements (BMI (N = 12 830); triceps, subscapular, fat mass and fat mass index (N = 11 845-11 901); biceps, suprailiac skinfolds, sum of skinfolds calculated from skinfold thicknesses (N = 8129-8205), neck circumference (N = 12 241); waist circumference and waist-to-height ratio (N = 12 381)) were analysed stratified by sex and smoothed 1st, 3rd, 10th, 25th, 50th, 75th, 90th, 97th and 99th percentile curves were calculated using GAMLSS. RESULTS: Percentile values of the most important anthropometric measures related to the degree of adiposity are depicted for European girls and boys. Age-and sex-specific differences were investigated for all measures. As an example, the 50th and 99th percentile values of waist circumference ranged from 50.7-59.2 cm and from 51.3-58.7 cm in 4.5-to < 5.0-year-old girls and boys, respectively, to 60.6-74.5 cm in girls and to 59.9-76.7 cm in boys at the age of 10.5-10.9 years. CONCLUSION: The presented percentile curves may aid a differentiated assessment of total and abdominal adiposity in European children

    At the crossroads of biomacromolecular research: highlighting the interdisciplinary nature of the field

    Get PDF
    Due to their complexity and wide-ranging utility, biomacromolecular research is an especially interdisciplinary branch of chemistry. It is my goal that the Biomacromolecules subject area of Chemistry Central Journal will parallel this richness and diversity. In this inaugural commentary, I attempt to set the stage for achieving this by highlighting several areas where biomacromolecular research overlaps more traditional chemistry sub-disciplines. Specifically, it is discussed how Materials Science and Biotechnology, Analytical Chemistry, Cell Biology and Chemical Theory are each integral to modern biomacromolecular research. Investigators with reports in any of these areas, or any other dealing with biomacromolecules, are encouraged to submit their research papers to Chemistry Central Journal

    Groupwise Multimodal Image Registration using Joint Total Variation

    Get PDF
    In medical imaging it is common practice to acquire a wide range of modalities (MRI, CT, PET, etc.), to highlight different structures or pathologies. As patient movement between scans or scanning session is unavoidable, registration is often an essential step before any subsequent image analysis. In this paper, we introduce a cost function based on joint total variation for such multimodal image registration. This cost function has the advantage of enabling principled, groupwise alignment of multiple images, whilst being insensitive to strong intensity non-uniformities. We evaluate our algorithm on rigidly aligning both simulated and real 3D brain scans. This validation shows robustness to strong intensity non-uniformities and low registration errors for CT/PET to MRI alignment. Our implementation is publicly available at https://github.com/brudfors/coregistration-njtv

    CNS distribution, signalling properties and central effects of G-protein coupled receptor 4

    Get PDF
    This is the author accepted manuscript. The final version is available from Elsevier via the DOI in this recordInformation on the distribution and biology of the G-protein coupled receptor 4 (GPR4) in the brain is limited. It is currently thought that GPR4 couples to Gs proteins and may mediate central respiratory sensitivity to CO2. Using a knock-in mouse model, abundant GPR4 expression was detected in the cerebrovascular endothelium and neurones of dorsal raphe, retro-trapezoidal nucleus locus coeruleus and lateral septum. A similar distribution was confirmed using RNAscope in situ hybridisation. In HEK293 cells, overexpressing GPR4, it was highly constitutively active at neutral pH with little further increase in cAMP towards acidic pH. The GPR4 antagonist NE 52-QQ57 effectively blocked GPR4-mediated cAMP accumulation (IC50 26.8 nM in HEK293 cells). In HUVEC which natively express GPR4, physiological acidification (pH 7.4-7.0) resulted in a cAMP increase by ∼55% which was completely prevented by 1 μM NE 52-QQ57. The main extracellular organic acid, l-lactic acid (LL; 1-10 mM), suppressed pH dependent activation of GPR4 in HEK293 and HUVEC cells, suggesting allosteric negative modulation. In unanaesthetised mice and rats, NE 52-QQ57 (20 mg kg-1) reduced ventilatory response to 5 and 10% CO2. In anaesthetised rats, systemic administration of NE 52-QQ57 (up to 20 mg kg-1) had no effect on hemodynamics, cerebral blood flow and blood oxygen level dependent responses. Central administration of NE 52-QQ57 (1 mM) in vagotomised anaesthetised rats did not affect CO2-induced respiratory responses. Our results indicate that GPR4 is expressed by multiple neuronal populations and endothelium and that its pH sensitivity is affected by level of expression and LL. NE 52-QQ57 blunts hypercapnic response to CO2 but this effect is absent under anaesthesia, possibly due to the inhibitory effect of LL on GPR4.Biotechnology and Biological Sciences Research Council (BBSRC)Medical Research Council (MRC)Wellcome Trus

    CNS distribution, signalling properties and central effects of G-protein coupled receptor 4

    Get PDF
    This is the author accepted manuscript. The final version is available from Elsevier via the DOI in this recordInformation on the distribution and biology of the G-protein coupled receptor 4 (GPR4) in the brain is limited. It is currently thought that GPR4 couples to Gs proteins and may mediate central respiratory sensitivity to CO2. Using a knock-in mouse model, abundant GPR4 expression was detected in the cerebrovascular endothelium and neurones of dorsal raphe, retro-trapezoidal nucleus locus coeruleus and lateral septum. A similar distribution was confirmed using RNAscope in situ hybridisation. In HEK293 cells, overexpressing GPR4, it was highly constitutively active at neutral pH with little further increase in cAMP towards acidic pH. The GPR4 antagonist NE 52-QQ57 effectively blocked GPR4-mediated cAMP accumulation (IC50 26.8 nM in HEK293 cells). In HUVEC which natively express GPR4, physiological acidification (pH 7.4-7.0) resulted in a cAMP increase by ∼55% which was completely prevented by 1 μM NE 52-QQ57. The main extracellular organic acid, l-lactic acid (LL; 1-10 mM), suppressed pH dependent activation of GPR4 in HEK293 and HUVEC cells, suggesting allosteric negative modulation. In unanaesthetised mice and rats, NE 52-QQ57 (20 mg kg-1) reduced ventilatory response to 5 and 10% CO2. In anaesthetised rats, systemic administration of NE 52-QQ57 (up to 20 mg kg-1) had no effect on hemodynamics, cerebral blood flow and blood oxygen level dependent responses. Central administration of NE 52-QQ57 (1 mM) in vagotomised anaesthetised rats did not affect CO2-induced respiratory responses. Our results indicate that GPR4 is expressed by multiple neuronal populations and endothelium and that its pH sensitivity is affected by level of expression and LL. NE 52-QQ57 blunts hypercapnic response to CO2 but this effect is absent under anaesthesia, possibly due to the inhibitory effect of LL on GPR4.Biotechnology and Biological Sciences Research Council (BBSRC)Medical Research Council (MRC)Wellcome Trus

    Single-stage repair of adult aortic coarctation and concomitant cardiovascular pathologies: a new alternative surgical approach

    Get PDF
    BACKGROUND: Coarctation of the aorta in the adulthood is sometimes associated with additional cardiovascular pathologies that require intervention. Ideal approach in such patients is uncertain. Anatomic left-sided short aortic bypass from the arcus aorta to descending aorta via median sternotomy allows simultaneuos repair of both complex aortic coarctation and concomitant cardiac operation. MATERIALS: Four adult patients were underwent Anatomic left-sided short aortic bypass operation for complex aortic coarctation through median sternotomy using deep hypothermic circulatory arrest. Concomitant cardiac operations were Bentall procedure for annuloaortic ectasia in one patient, coronary artery bypass grafting for three vessel disease in two patient, and patch closure of ventricular septal defect in one patient. RESULTS: All patients survived the operation and were alive with patent bypass at a mean follow-up of 36 months. No graft-related complications occurred, and there were no instances of stroke or paraplegia. CONCLUSION: We conclude that single-stage repair of adult aortic coarctation with concomitant cardiovascular lesions can be performed safely using this newest technique

    Poloxomer 188 Has a Deleterious Effect on Dystrophic Skeletal Muscle Function

    Get PDF
    Duchenne muscular dystrophy (DMD) is an X-linked, fatal muscle wasting disease for which there is currently no cure and limited palliative treatments. Poloxomer 188 (P188) is a tri-block copolymer that has been proposed as a potential treatment for cardiomyopathy in DMD patients. Despite the reported beneficial effects of P188 on dystrophic cardiac muscle function, the effects of P188 on dystrophic skeletal muscle function are relatively unknown. Mdx mice were injected intraperitoneally with 460 mg/kg or 30 mg/kg P188 dissolved in saline, or saline alone (control). The effect of single-dose and 2-week daily treatment was assessed using a muscle function test on the Tibialis Anterior (TA) muscle in situ in anaesthetised mice. The test comprises a warm up, measurement of the force-frequency relationship and a series of eccentric contractions with a 10% stretch that have previously been shown to cause a drop in maximum force in mdx mice. After 2 weeks of P188 treatment at either 30 or 460 mg/kg/day the drop in maximum force produced following eccentric contractions was significantly greater than that seen in saline treated control mice (P = 0.0001). Two week P188 treatment at either dose did not significantly change the force-frequency relationship or maximum isometric specific force produced by the TA muscle. In conclusion P188 treatment increases susceptibility to contraction-induced injury following eccentric contractions in dystrophic skeletal muscle and hence its suitability as a potential therapeutic for DMD should be reconsidered

    The role of metacognition in self-critical rumination: an investigation in individuals presenting with low self-esteem

    Get PDF
    Background: No research, to date, has directly investigated the role of metacognition in self-critical rumination and low self-esteem. Aim: To investigate the presence of metacognitive beliefs about self-critical rumination; the goal of self-critical rumination and its stop signal; and the degree of detachment from intrusive self-critical thoughts. Method: Ten individuals reporting both a self-acknowledged tendency to judge themselves critically and having low self-esteem were assessed using metacognitive profiling, a semi-structured interview. Results: All participants endorsed both positive and negative metacognitive beliefs about self-critical rumination. Positive metacognitive beliefs concerned the usefulness of self-critical rumination as a means of improving cognitive performance and enhancing motivation. Negative metacognitive beliefs concerned the uncontrollability of self-critical rumination and its negative impact on mood, motivation and perception of self-worth. The primary goal of engaging in self-critical rumination was to achieve a better or clearer understanding of a given trigger situation or to feel more motivated to resolve it. However, only four participants were able to identify when this goal had been achieved, which was if the trigger situation were not to occur again. Participants unanimously stated that they were either unable to detach from their self-critical thoughts or could do so some of the time with varying degrees of success. More often than not, though, self-critical thoughts were viewed as facts, would rarely be seen as distorted or biased, and could take hours or days to dissipate. Conclusions: These findings provide preliminary evidence that specific facets of metacognition play a role in the escalation and perseveration of self-critical rumination
    corecore