19 research outputs found

    Shell we cook it? An experimental approach to the microarchaeological record of shellfish roasting

    Get PDF
    In this paper, we investigate the microarchaeological traces and archaeological visibility of shellfish cooking activities through a series of experimental procedures with direct roasting using wood-fueled fires and controlled heating in a muffle furnace. An interdisciplinary geoarchacological approach, combining micromorphology, FTIR (in transmission and ATR collection modes), TGA and XRD, was used to establish a baseline on the mineralogical transformation of heated shells from aragonite to calcite and diagnostic sedimentary traces produced by roasting fire features. Our experimental design focused on three main types of roasting procedures: the construction of shallow depressions with heated rocks (pebble cuvette experiments), placing shellfish on top of hot embers and ashes (fire below experiment), and by kindling short-lived fires on top of shellfish (fire above experiments). Our results suggest that similar shellfish roasting procedures will largely create microstratigraphic signatures of anthropogenically reworked combusted material spatially "disconnected" from the actual combustion locus. The construction of shallow earth ovens might entail an increased archaeological visibility, and some diagnostic signatures of in situ hearths can be obtained by fire below roasting activities. We also show that macroscopic visual modifications and mineralogical characterization of discarded shellfish might be indicative of specific cooking activities versus secondary burning.Max Planck Societyinfo:eu-repo/semantics/publishedVersio

    The bile salt glycocholate induces global changes in gene and protein expression and activates virulence in enterotoxigenic Escherichia coli

    Get PDF
    Pathogenic bacteria use specific host factors to modulate virulence and stress responses during infection. We found previously that the host factor bile and the bile component glyco-conjugated cholate (NaGCH, sodium glycocholate) upregulate the colonization factor CS5 in enterotoxigenic Escherichia coli (ETEC). To further understand the global regulatory effects of bile and NaGCH, we performed Illumina RNA-Seq and found that crude bile and NaGCH altered the expression of 61 genes in CS5 + CS6 ETEC isolates. The most striking finding was high induction of the CS5 operon (csfA-F), its putative transcription factor csvR, and the putative ETEC virulence factor cexE. iTRAQ-coupled LC-MS/MS proteomic analyses verified induction of the plasmid-borne virulence proteins CS5 and CexE and also showed that NaGCH affected the expression of bacterial membrane proteins. Furthermore, NaGCH induced bacteria to aggregate, increased their adherence to epithelial cells, and reduced their motility. Our results indicate that CS5 + CS6 ETEC use NaGCH present in the small intestine as a signal to initiate colonization of the epithelium

    Single-dose administration and the influence of the timing of the booster dose on immunogenicity and efficacy of ChAdOx1 nCoV-19 (AZD1222) vaccine: a pooled analysis of four randomised trials.

    Get PDF
    BACKGROUND: The ChAdOx1 nCoV-19 (AZD1222) vaccine has been approved for emergency use by the UK regulatory authority, Medicines and Healthcare products Regulatory Agency, with a regimen of two standard doses given with an interval of 4-12 weeks. The planned roll-out in the UK will involve vaccinating people in high-risk categories with their first dose immediately, and delivering the second dose 12 weeks later. Here, we provide both a further prespecified pooled analysis of trials of ChAdOx1 nCoV-19 and exploratory analyses of the impact on immunogenicity and efficacy of extending the interval between priming and booster doses. In addition, we show the immunogenicity and protection afforded by the first dose, before a booster dose has been offered. METHODS: We present data from three single-blind randomised controlled trials-one phase 1/2 study in the UK (COV001), one phase 2/3 study in the UK (COV002), and a phase 3 study in Brazil (COV003)-and one double-blind phase 1/2 study in South Africa (COV005). As previously described, individuals 18 years and older were randomly assigned 1:1 to receive two standard doses of ChAdOx1 nCoV-19 (5 × 1010 viral particles) or a control vaccine or saline placebo. In the UK trial, a subset of participants received a lower dose (2·2 × 1010 viral particles) of the ChAdOx1 nCoV-19 for the first dose. The primary outcome was virologically confirmed symptomatic COVID-19 disease, defined as a nucleic acid amplification test (NAAT)-positive swab combined with at least one qualifying symptom (fever ≥37·8°C, cough, shortness of breath, or anosmia or ageusia) more than 14 days after the second dose. Secondary efficacy analyses included cases occuring at least 22 days after the first dose. Antibody responses measured by immunoassay and by pseudovirus neutralisation were exploratory outcomes. All cases of COVID-19 with a NAAT-positive swab were adjudicated for inclusion in the analysis by a masked independent endpoint review committee. The primary analysis included all participants who were SARS-CoV-2 N protein seronegative at baseline, had had at least 14 days of follow-up after the second dose, and had no evidence of previous SARS-CoV-2 infection from NAAT swabs. Safety was assessed in all participants who received at least one dose. The four trials are registered at ISRCTN89951424 (COV003) and ClinicalTrials.gov, NCT04324606 (COV001), NCT04400838 (COV002), and NCT04444674 (COV005). FINDINGS: Between April 23 and Dec 6, 2020, 24 422 participants were recruited and vaccinated across the four studies, of whom 17 178 were included in the primary analysis (8597 receiving ChAdOx1 nCoV-19 and 8581 receiving control vaccine). The data cutoff for these analyses was Dec 7, 2020. 332 NAAT-positive infections met the primary endpoint of symptomatic infection more than 14 days after the second dose. Overall vaccine efficacy more than 14 days after the second dose was 66·7% (95% CI 57·4-74·0), with 84 (1·0%) cases in the 8597 participants in the ChAdOx1 nCoV-19 group and 248 (2·9%) in the 8581 participants in the control group. There were no hospital admissions for COVID-19 in the ChAdOx1 nCoV-19 group after the initial 21-day exclusion period, and 15 in the control group. 108 (0·9%) of 12 282 participants in the ChAdOx1 nCoV-19 group and 127 (1·1%) of 11 962 participants in the control group had serious adverse events. There were seven deaths considered unrelated to vaccination (two in the ChAdOx1 nCov-19 group and five in the control group), including one COVID-19-related death in one participant in the control group. Exploratory analyses showed that vaccine efficacy after a single standard dose of vaccine from day 22 to day 90 after vaccination was 76·0% (59·3-85·9). Our modelling analysis indicated that protection did not wane during this initial 3-month period. Similarly, antibody levels were maintained during this period with minimal waning by day 90 (geometric mean ratio [GMR] 0·66 [95% CI 0·59-0·74]). In the participants who received two standard doses, after the second dose, efficacy was higher in those with a longer prime-boost interval (vaccine efficacy 81·3% [95% CI 60·3-91·2] at ≥12 weeks) than in those with a short interval (vaccine efficacy 55·1% [33·0-69·9] at <6 weeks). These observations are supported by immunogenicity data that showed binding antibody responses more than two-fold higher after an interval of 12 or more weeks compared with an interval of less than 6 weeks in those who were aged 18-55 years (GMR 2·32 [2·01-2·68]). INTERPRETATION: The results of this primary analysis of two doses of ChAdOx1 nCoV-19 were consistent with those seen in the interim analysis of the trials and confirm that the vaccine is efficacious, with results varying by dose interval in exploratory analyses. A 3-month dose interval might have advantages over a programme with a short dose interval for roll-out of a pandemic vaccine to protect the largest number of individuals in the population as early as possible when supplies are scarce, while also improving protection after receiving a second dose. FUNDING: UK Research and Innovation, National Institutes of Health Research (NIHR), The Coalition for Epidemic Preparedness Innovations, the Bill & Melinda Gates Foundation, the Lemann Foundation, Rede D'Or, the Brava and Telles Foundation, NIHR Oxford Biomedical Research Centre, Thames Valley and South Midland's NIHR Clinical Research Network, and AstraZeneca

    Searching for the human genetic factors standing in the way of universally effective vaccines.

    No full text
    Vaccines have revolutionized modern public health. The effectiveness of some vaccines is limited by the variation in response observed between individuals and across populations. There is compelling evidence that a significant proportion of this variability can be attributed to human genetic variation, especially for those vaccines administered in early life. Identifying and understanding the determinants of this variation could have a far-reaching influence upon future methods of vaccine design and deployment. In this review, we summarize the genetic studies that have been undertaken attempting to identify the genetic determinants of response heterogeneity for the vaccines against hepatitis B, measles and rubella. We offer a critical appraisal of these studies and make a series of suggestions about how modern genetic techniques, including genome-wide association studies, could be used to characterize the genetic architecture of vaccine response heterogeneity. We conclude by suggesting how the findings from such studies could be translated to improve vaccine effectiveness and target vaccination in a more cost-effective manner

    Searching for the human genetic factors standing in the way of universally effective vaccines.

    No full text
    Vaccines have revolutionized modern public health. The effectiveness of some vaccines is limited by the variation in response observed between individuals and across populations. There is compelling evidence that a significant proportion of this variability can be attributed to human genetic variation, especially for those vaccines administered in early life. Identifying and understanding the determinants of this variation could have a far-reaching influence upon future methods of vaccine design and deployment. In this review, we summarize the genetic studies that have been undertaken attempting to identify the genetic determinants of response heterogeneity for the vaccines against hepatitis B, measles and rubella. We offer a critical appraisal of these studies and make a series of suggestions about how modern genetic techniques, including genome-wide association studies, could be used to characterize the genetic architecture of vaccine response heterogeneity. We conclude by suggesting how the findings from such studies could be translated to improve vaccine effectiveness and target vaccination in a more cost-effective manner
    corecore