259 research outputs found

    Effect of Calf Gender on Milk Yield and Fatty Acid Content in Holstein Dairy Cows

    Get PDF
    The scale of sexed semen use to avoid the birth of unwanted bull calves in the UK dairy industry depends on several economic factors. It has been suggested in other studies that calf gender may affect milk yield in Holsteins- something that would affect the economics of sexed semen use. The present study used a large milk recording data set to evaluate the effect of calf gender (both calf born and calf in utero) on both milk yield and saturated fat content. Linear regression was used to model data for first lactation and second lactation separately. Results showed that giving birth to a heifer calf conferred a 1% milk yield advantage in first lactation heifers, whilst giving birth to a bull calf conferred a 0.5% advantage in second lactation. Heifer calves were also associated with a 0.66kg reduction in saturated fatty acid content of milk in first lactation, but there was no significant difference between the genders in second lactation. No relationship was found between calf gender and milk mono- or polyunsaturated fatty acid content. The observed effects of calf gender on both yield and saturated fatty acid content was considered minor when compared to nutritional and genetic influences

    A danger of low copy numbers for inferring incorrect cooperativity degree

    Get PDF
    Background: A dose-response curve depicts fraction of bound proteins as a function of unbound ligands. Dose-response curves are used to measure the cooperativity degree of a ligand binding process. Frequently, the Hill function is used to fit the experimental data. The Hill function is parameterized by the value of the dissociation constant, and the Hill coefficient which describes the cooperativity degree. The use of Hill's model and the Hill function have been heavily criticised in this context, predominantly the assumption that all ligands bind at once, which lead to further refinements of the model. In this work, the validity of the Hill function has been studied from an entirely different point of view. In the limit of low copy numbers the dynamics of the system becomes noisy. The goal was to asses the validity of the Hill function in this limit, and to see in which ways the effects of the fluctuations change the form of the dose-response curves. Results: Dose-response curves were computed taking into account effects of fluctuations. The effects of fluctuations were described at the lowest order (the second moment of the particle number distribution) by using previously developed Pair Approach Reaction Noise EStimator (PARNES) method. The stationary state of the system is described by nine equations with nine unknowns. To obtain fluctuation corrected dose-response curves the equations have been investigated numerically. Conclusions: The Hill function cannot describe dose-response curves in a low particle limit. First, dose-response curves are not solely parameterized by the dissociation constant and the Hill coefficient. In general, the shape of a dose-response curve depends on the variables that describe how an experiment (ensemble) is designed. Second, dose-response curves are multi valued in a rather non-trivial way

    Species Differentiation on a Dynamic Landscape: Shifts in Metapopulation Genetic Structure Using the Chronology of the Hawaiian Archipelago

    Get PDF
    Species formation during adaptive radiation often occurs in the context of a changing environment. The establishment and arrangement of populations, in space and time, sets up ecological and genetic processes that dictate the rate and pattern of differentiation. Here, we focus on how a dynamic habitat can affect genetic structure, and ultimately, differentiation among populations. We make use of the chronology and geographical history provided by the Hawaiian archipelago to examine the initial stages of population establishment and genetic divergence. We use data from a set of 6 spider lineages that differ in habitat affinities, some preferring low elevation habitats with a longer history of connection, others being more specialized for high elevation and/or wet forest, some with more general habitat affinities. We show that habitat preferences associated with lineages are important in ecological and genetic structuring. Lineages that have more restricted habitat preferences are subject to repeated episodes of isolation and fragmentation as a result of lava flows and vegetation succession. The initial dynamic set up by the landscape translates over time into discrete lineages. Further work is needed to understand how genetic changes interact with a changing set of ecological interactions amongst a shifting mosaic of landscapes to achieve species formation

    A new multicompartmental reaction-diffusion modeling method links transient membrane attachment of E. coli MinE to E-ring formation

    Get PDF
    Many important cellular processes are regulated by reaction-diffusion (RD) of molecules that takes place both in the cytoplasm and on the membrane. To model and analyze such multicompartmental processes, we developed a lattice-based Monte Carlo method, Spatiocyte that supports RD in volume and surface compartments at single molecule resolution. Stochasticity in RD and the excluded volume effect brought by intracellular molecular crowding, both of which can significantly affect RD and thus, cellular processes, are also supported. We verified the method by comparing simulation results of diffusion, irreversible and reversible reactions with the predicted analytical and best available numerical solutions. Moreover, to directly compare the localization patterns of molecules in fluorescence microscopy images with simulation, we devised a visualization method that mimics the microphotography process by showing the trajectory of simulated molecules averaged according to the camera exposure time. In the rod-shaped bacterium _Escherichia coli_, the division site is suppressed at the cell poles by periodic pole-to-pole oscillations of the Min proteins (MinC, MinD and MinE) arising from carefully orchestrated RD in both cytoplasm and membrane compartments. Using Spatiocyte we could model and reproduce the _in vivo_ MinDE localization dynamics by accounting for the established properties of MinE. Our results suggest that the MinE ring, which is essential in preventing polar septation, is largely composed of MinE that is transiently attached to the membrane independently after recruited by MinD. Overall, Spatiocyte allows simulation and visualization of complex spatial and reaction-diffusion mediated cellular processes in volumes and surfaces. As we showed, it can potentially provide mechanistic insights otherwise difficult to obtain experimentally

    Predictability of evolutionary trajectories in fitness landscapes

    Get PDF
    Experimental studies on enzyme evolution show that only a small fraction of all possible mutation trajectories are accessible to evolution. However, these experiments deal with individual enzymes and explore a tiny part of the fitness landscape. We report an exhaustive analysis of fitness landscapes constructed with an off-lattice model of protein folding where fitness is equated with robustness to misfolding. This model mimics the essential features of the interactions between amino acids, is consistent with the key paradigms of protein folding and reproduces the universal distribution of evolutionary rates among orthologous proteins. We introduce mean path divergence as a quantitative measure of the degree to which the starting and ending points determine the path of evolution in fitness landscapes. Global measures of landscape roughness are good predictors of path divergence in all studied landscapes: the mean path divergence is greater in smooth landscapes than in rough ones. The model-derived and experimental landscapes are significantly smoother than random landscapes and resemble additive landscapes perturbed with moderate amounts of noise; thus, these landscapes are substantially robust to mutation. The model landscapes show a deficit of suboptimal peaks even compared with noisy additive landscapes with similar overall roughness. We suggest that smoothness and the substantial deficit of peaks in the fitness landscapes of protein evolution are fundamental consequences of the physics of protein folding.Comment: 14 pages, 7 figure

    Rapid cultural adaptation can facilitate the evolution of large-scale cooperation

    Get PDF
    Over the past several decades, we have argued that cultural evolution can facilitate the evolution of large-scale cooperation because it often leads to more rapid adaptation than genetic evolution, and, when multiple stable equilibria exist, rapid adaptation leads to variation among groups. Recently, Lehmann, Feldman, and colleagues have published several papers questioning this argument. They analyze models showing that cultural evolution can actually reduce the range of conditions under which cooperation can evolve and interpret these models as indicating that we were wrong to conclude that culture facilitated the evolution of human cooperation. In the main, their models assume that rates of cultural adaption are not strong enough compared to migration to maintain persistent variation among groups when payoffs create multiple stable equilibria. We show that Lehmann et al. reach different conclusions because they have made different assumptions. We argue that the assumptions that underlie our models are more consistent with the empirical data on large-scale cultural variation in humans than those of Lehmann et al., and thus, our models provide a more plausible account of the cultural evolution of human cooperation in large groups

    How Noisy Adaptation of Neurons Shapes Interspike Interval Histograms and Correlations

    Get PDF
    Channel noise is the dominant intrinsic noise source of neurons causing variability in the timing of action potentials and interspike intervals (ISI). Slow adaptation currents are observed in many cells and strongly shape response properties of neurons. These currents are mediated by finite populations of ionic channels and may thus carry a substantial noise component. Here we study the effect of such adaptation noise on the ISI statistics of an integrate-and-fire model neuron by means of analytical techniques and extensive numerical simulations. We contrast this stochastic adaptation with the commonly studied case of a fast fluctuating current noise and a deterministic adaptation current (corresponding to an infinite population of adaptation channels). We derive analytical approximations for the ISI density and ISI serial correlation coefficient for both cases. For fast fluctuations and deterministic adaptation, the ISI density is well approximated by an inverse Gaussian (IG) and the ISI correlations are negative. In marked contrast, for stochastic adaptation, the density is more peaked and has a heavier tail than an IG density and the serial correlations are positive. A numerical study of the mixed case where both fast fluctuations and adaptation channel noise are present reveals a smooth transition between the analytically tractable limiting cases. Our conclusions are furthermore supported by numerical simulations of a biophysically more realistic Hodgkin-Huxley type model. Our results could be used to infer the dominant source of noise in neurons from their ISI statistics

    Neotropical Bats: Estimating Species Diversity with DNA Barcodes

    Get PDF
    DNA barcoding using the cytochrome c oxidase subunit 1 gene (COI) is frequently employed as an efficient method of species identification in animal life and may also be used to estimate species richness, particularly in understudied faunas. Despite numerous past demonstrations of the efficiency of this technique, few studies have attempted to employ DNA barcoding methodologies on a large geographic scale, particularly within tropical regions. In this study we survey current and potential species diversity using DNA barcodes with a collection of more than 9000 individuals from 163 species of Neotropical bats (order Chiroptera). This represents one of the largest surveys to employ this strategy on any animal group and is certainly the largest to date for land vertebrates. Our analysis documents the utility of this tool over great geographic distances and across extraordinarily diverse habitats. Among the 163 included species 98.8% possessed distinct sets of COI haplotypes making them easily recognizable at this locus. We detected only a single case of shared haplotypes. Intraspecific diversity in the region was high among currently recognized species (mean of 1.38%, range 0–11.79%) with respect to birds, though comparable to other bat assemblages. In 44 of 163 cases, well-supported, distinct intraspecific lineages were identified which may suggest the presence of cryptic species though mean and maximum intraspecific divergence were not good predictors of their presence. In all cases, intraspecific lineages require additional investigation using complementary molecular techniques and additional characters such as morphology and acoustic data. Our analysis provides strong support for the continued assembly of DNA barcoding libraries and ongoing taxonomic investigation of bats
    corecore