7 research outputs found

    Unraveling the forcings controlling the vegetation and climate of the best orbital analogues for the present interglacial in SW Europe

    Get PDF
    The suitability of MIS 11c and MIS 19c as analogues of our present interglacial and its natural evolution is still debated. Here we examine the regional expression of the Holocene and its orbital analogues over SW Iberia using a model-data comparison approach. Regional tree fraction and climate based on snapshot and transient experiments using the LOVECLIM model are evaluated against the terrestrial-marine profiles from Site U1385 documenting the regional vegetation and climatic changes. The pollen-based reconstructions show a larger forest optimum during the Holocene compared to MIS 11c and MIS 19c, putting into question their analogy in SW Europe. Pollen-based and model results indicate reduced MIS 11c forest cover compared to the Holocene primarily driven by lower winter precipitation, which is critical for Mediterranean forest development. Decreased precipitation was possibly induced by the amplified MIS 11c latitudinal insolation and temperature gradient that shifted the westerlies northwards. In contrast, the reconstructed lower forest optimum at MIS 19c is not reproduced by the simulations probably due to the lack of Eurasian ice sheets and its related feedbacks in the model. Transient experiments with time-varying insolation and CO2 reveal that the SW Iberian forest dynamics over the interglacials are mostly coupled to changes in winter precipitation mainly controlled by precession, CO2 playing a negligible role. Model simulations reproduce the observed persistent vegetation changes at millennial time scales in SW Iberia and the strong forest reductions marking the end of the interglacial "optimum".SFRH/BD/9079/2012, SFRH/BPD/108712/2015, SFRH/BPD/108600/2015info:eu-repo/semantics/publishedVersio

    Radiative forcing and climate impact resulting from SO2 injections based on a 200,000 year record of Plinian eruptions along the Central American Volcanic Arc

    No full text
    We present for the first time a self-consistent methodology connecting volcanological field data to global climate model estimates for a regional time series of explosive volcanic events. Using the petrologic method, we estimated SO2 emissions from 36 detected Plinian volcanic eruptions occurring at the Central American Volcanic Arc (CAVA) during the past 200,000 years. Together with simple parametrized relationships collected from past studies, we derive estimates of global maximum volcanic aerosol optical depth (AOD) and radiative forcing (RF) describing the effect of each eruption on radiation reaching the Earth’s surface. In parallel, AOD and RF time series for selected CAVA eruptions are simulated with the global aerosol model MAECHAM5-HAM, which shows a relationship between stratospheric SO2 injection and maximum global mean AOD that is linear for smaller volcanic eruptions (<5 Mt SO2) and nonlinear for larger ones (≥5 Mt SO2) and is qualitatively and quantitatively consistent with the relationship used in the simple parametrized approximation. Potential climate impacts of the selected CAVA eruptions are estimated using an earth system model of intermediate complexity by RF time series derived by (1) directly from the global aerosol model and (2) from the simple parametrized approximation assuming a 12-month exponential decay of global AOD. We find that while the maximum AOD and RF values are consistent between the two methods, their temporal evolutions are significantly different. As a result, simulated global maximum temperature anomalies and the duration of the temperature response depend on which RF time series is used, varying between 2 and 3 K and 60 and 90 years for the largest eruption of the CAVA dataset. Comparing the recurrence time of eruptions, based on the CAVA dataset, with the duration of climate impacts, based on the model results, we conclude that cumulative impacts due to successive eruptions are unlikely. The methodology and results presented here can be used to calculate approximate volcanic forcings and potential climate impacts from sulfur emissions, sulfate aerosol or AOD data for any eruption that injects sulfur into the tropical stratosphere

    Clay-mineral and grain-size distributions in surface sediments of the White Sea (Arctic Ocean): indicators of sediment sources and transport processes

    No full text
    In this study, the grain-size and clay-mineral compositions of 73 surface sediment samples collected in a variety of environmental settings in the White Sea are presented to characterize recent sedimentation processes, reconstruct transport pathways, and identify potential source areas of the terrigenous components. Areas >100 m deep are invariably characterized by silty clay, whereas areas <100 m deep exhibit more heterogeneous grain-size compositions plausibly explained by coastal erosion and (re-)distribution mechanisms, particularly tidal currents. The dominance of sand in the estuarine areas of the Onega and Dvina rivers as well as toward Gorlo Strait connecting the White Sea with the Barents Sea, is attributed to increased current speeds. Illite and smectite are the dominant clay minerals in recent sediments of the southwestern and eastern White Sea sectors, respectively. Their distribution patterns largely depend on the geology of the source areas and mirror surface circulation patterns, especially in Dvina Bay. Smectite is a key clay mineral in White Sea surface sediments as it reveals the dominating influence of the Northern Dvina's runoff on sedimentation and water circulation throughout the basin of the sea. In comparison to other Eurasian shelf seas, the White Sea is characterized by a greater diversity of clay-mineral assemblages, which range from illite- to smectite-dominated sectors containing variable amounts of chlorite and kaolinite
    corecore