7 research outputs found

    Validation of the Brief Developmental Assessment in pre-school children with heart disease

    Get PDF
    INTRODUCTION: The objective of this study was to prospectively validate the “Brief Developmental Assessment”, which is a new early recognition tool for neurodevelopmental abnormalities in children with heart disease that was developed for use by cardiac teams. METHODS: This was a prospective validation study among a representative sample of 960 pre-school children with heart disease from three United Kingdom tertiary cardiac centres who were analysed grouped into five separate age bands. RESULTS: The “Brief Developmental Assessment” was successfully validated in the older four age bands, but not in the youngest representing infants under the age of 4 months, as pre-set validation thresholds were met – lower 95% confidence limit for the correlation coefficient above 0.75 – in terms of agreement of scores between two raters and with an external measure the “Mullen Scales of Early Learning”. On the basis of American Association of Pediatrics Guidelines, which state that the sensitivity and specificity of a developmental screening tool should fall between 70 and 80%, “Brief Developmental Assessment” outcome of Red meets this threshold for detection of Mullen scores >2 standard deviations below the mean. CONCLUSION: The “Brief Developmental Assessment” may be used to improve the quality of assessment of children with heart disease. This will require a training package for users and a guide to action for abnormal results. Further research is needed to determine how best to deploy the “Brief Developmental Assessment” at different time points in children with heart disease and to determine the management strategy in infants younger than 4 months old

    Nitric oxide synthases in infants and children with pulmonary hypertension and congenital heart disease

    Get PDF
    Nitric oxide is an important regulator of vascular tone in the pulmonary circulation. Surgical correction of congenital heart disease limits pulmonary hypertension to a brief period. The study has measured expression of endothelial (eNOS), inducible (iNOS), and neuronal nitric oxide synthase (nNOS) in the lungs from biopsies of infants with pulmonary hypertension secondary to cardiac abnormalities (n = 26), compared to a control group who did not have pulmonary or cardiac disease (n = 8). eNOS, iNOS and nNOS were identified by immunohistochemistry and quantified in specific cell types. Significant increases of eNOS and iNOS staining were found in pulmonary vascular endothelial cells of patients with congenital heart disease compared to control infants. These changes were confined to endothelial cells and not present in other cell types. Patients who strongly expressed eNOS also had strong expression of iNOS. Upregulation of eNOS and iNOS occurs at an early stage of pulmonary hypertension, and may be a compensatory mechanism limiting the rise in pulmonary artery pressure

    The Respiratory System

    No full text
    corecore