1,165 research outputs found

    Continuous monitoring of back wall stress corrosion cracking growth in sensitized type 304 stainless steel weldment by means of potential drop techniques

    Get PDF
    Stress corrosion cracking (SCC) tests on welded specimens of sensitized type 304SS with a thickness of 20 mm were performed in sodium thiosulphate solution at room temperature, with continuous monitoring of the SCC growth, using the techniques of modified induced current potential drop (MICPD), alternating current potential drop (ACPD) and direct current potential drop (DCPD). The MICPD and DCPD techniques permit continuous monitoring of the back wall SCC, which initiates from a fatigue pre-crack at a depth of about 4 mm, from which it propagates through more than 80% of the specimen thickness. The MICPD technique can decrease the effect of the current flowing in the direction of the crack length by focusing the induced current into the local area of measurement using induction coils, so that the sensitivity of the continuous monitoring of the back wall SCC is higher than that of the ACPD and DCPD techniques

    Transition caused by the laminar flow separation

    Get PDF
    An experimental investigation of the effects of the geometry of body surface, Reynolds number, stream turbulence, and a roughness element (wire) on the reattachment of separated laminar boundary-layer flow on a bent flat plate is presented and discussed. The flow mechanisms determining reattachment of the boundary layer are analyzed and discussed

    Preparation of (11n) Oriented Bi2Sr2CaCu2O8+x Thin Films by the Metal-organic Decomposition Method

    Get PDF
    AbstractWe report on the preparation of (11n) oriented thin films of Bi2Sr2CaCu2O8+x (Bi2212), which were fabricated by the metal-organic decomposition method on SrTiO3 (110) and characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM) measurements. By controlling the post-deposition annealing condition (temperature 640°C ≀ Ta ≀ 780°C and time 30min ≀ ta ≀ 120min), films with only the Bi2212 (117) XRD peak were obtained under the condition Ta = 780°C and ta = 30min. Furthermore, by forming films with a double-layer structure, films are found to have better crystallinity. Film properties are discussed on basis of SEM and resistivity measurements

    Superconducting anisotropy and evidence for intrinsic pinning in single crystalline MgB2_2

    Full text link
    We examine the superconducting anisotropy γc=(mc/mab)1/2\gamma_c = (m_c / m_{ab})^{1/2} of a metallic high-TcT_c superconductor MgB2_2 by measuring the magnetic torque of a single crystal. The anisotropy γc\gamma_c does not depend sensitively on the applied magnetic field at 10 K. We obtain the anisotropy parameter γc=4.31±0.14\gamma_c = 4.31 \pm 0.14. The torque curve shows the sharp hysteresis peak when the field is applied parallel to the boron layers. This comes from the intrinsic pinning and is experimental evidence for the occurrence of superconductivity in the boron layers.Comment: REVTeX 4, To be published in Physical Review

    Engineering Corynebacterium glutamicum for isobutanol production

    Get PDF
    The production of isobutanol in microorganisms has recently been achieved by harnessing the highly active 2-keto acid pathways. Since these 2-keto acids are precursors of amino acids, we aimed to construct an isobutanol production platform in Corynebacterium glutamicum, a well-known amino-acid-producing microorganism. Analysis of this host’s sensitivity to isobutanol toxicity revealed that C. glutamicum shows an increased tolerance to isobutanol relative to Escherichia coli. Overexpression of alsS of Bacillus subtilis, ilvC and ilvD of C. glutamicum, kivd of Lactococcus lactis, and a native alcohol dehydrogenase, adhA, led to the production of 2.6 g/L isobutanol and 0.4 g/L 3-methyl-1-butanol in 48 h. In addition, other higher chain alcohols such as 1-propanol, 2-methyl-1-butanol, 1-butanol, and 2-phenylethanol were also detected as byproducts. Using longer-term batch cultures, isobutanol titers reached 4.0 g/L after 96 h with wild-type C. glutamicum as a host. Upon the inactivation of several genes to direct more carbon through the isobutanol pathway, we increased production by ∌25% to 4.9 g/L isobutanol in a ∆pyc∆ldh background. These results show promise in engineering C. glutamicum for higher chain alcohol production using the 2-keto acid pathways

    Simulation-based analysis of micro-robots swimming at the center and near the wall of circular mini-channels

    Get PDF
    Swimming micro robots have great potential in biomedical applications such as targeted drug delivery, medical diagnosis, and destroying blood clots in arteries. Inspired by swimming micro organisms, micro robots can move in biofluids with helical tails attached to their bodies. In order to design and navigate micro robots, hydrodynamic characteristics of the flow field must be understood well. This work presents computational fluid dynamics (CFD) modeling and analysis of the flow due to the motion of micro robots that consist of magnetic heads and helical tails inside fluid-filled channels akin to bodily conduits; special emphasis is on the effects of the radial position of the robot. Time-averaged velocities, forces, torques, and efficiency of the micro robots placed in the channels are analyzed as functions of rotation frequency, helical pitch (wavelength) and helical radius (amplitude) of the tail. Results indicate that robots move faster and more efficiently near the wall than at the center of the channel. Forces acting on micro robots are asymmetrical due to the chirality of the robot’s tail and its motion. Moreover, robots placed near the wall have a different flow pattern around the head when compared to in-center and unbounded swimmers. According to simulation results, time-averaged for-ward velocity of the robot agrees well with the experimental values measured previously for a robot with almost the same dimensions
    • 

    corecore