28 research outputs found
Quantifying the health impacts of ambient air pollutants: recommendations of a WHO/Europe project.
OBJECTIVE: Quantitative estimates of air pollution health impacts have become an increasingly critical input to policy decisions. The WHO project "Health risks of air pollution in Europe--HRAPIE" was implemented to provide the evidence-based concentration-response functions for quantifying air pollution health impacts to support the 2013 revision of the air quality policy for the European Union (EU). METHODS: A group of experts convened by WHO Regional Office for Europe reviewed the accumulated primary research evidence together with some commissioned reviews and recommended concentration-response functions for air pollutant-health outcome pairs for which there was sufficient evidence for a causal association. RESULTS: The concentration-response functions link several indicators of mortality and morbidity with short- and long-term exposure to particulate matter, ozone and nitrogen dioxide. The project also provides guidance on the use of these functions and associated baseline health information in the cost-benefit analysis. CONCLUSIONS: The project results provide the scientific basis for formulating policy actions to improve air quality and thereby reduce the burden of disease associated with air pollution in Europe
Operational research to inform a sub-national surveillance intervention for malaria elimination in Solomon Islands
Background: Successful reduction of malaria transmission to very low levels has made Isabel Province, Solomon Islands, a target for early elimination by 2014. High malaria transmission in neighbouring provinces and the potential for local asymptomatic infections to cause malaria resurgence highlights the need for sub-national tailoring of surveillance interventions. This study contributes to a situational analysis of malaria in Isabel Province to inform an appropriate surveillance intervention. Methods. A mixed method study was carried out in Isabel Province in late 2009 and early 2010. The quantitative component was a population-based prevalence survey of 8,554 people from 129 villages, which were selected using a spatially stratified sampling approach to achieve uniform geographical coverage of populated areas. Diagnosis was initially based on Giemsa-stained blood slides followed by molecular analysis using polymerase chain reaction (PCR). Local perceptions and practices related to management of fever and treatment-seeking that would impact a surveillance intervention were also explored using qualitative research methods. Results: Approximately 33% (8,554/26,221) of the population of Isabel Province participated in the survey. Only one subject was found to be infected with Plasmodium falciparum (Pf) (96 parasites/L) using Giemsa-stained blood films, giving a prevalence of 0.01%. PCR analysis detected a further 13 cases, giving an estimated malaria prevalence of 0.51%. There was a wide geographical distribution of infected subjects. None reported having travelled outside Isabel Province in the previous three months suggesting low-level indigenous malaria transmission. The qualitative findings provide warning signs that the current community vigilance approach to surveillance will not be sufficient to achieve elimination. In addition, fever severity is being used by individuals as an indicator for malaria and a trigger for timely treatment-seeking and case reporting. In light of the finding of a low prevalence of parasitaemia, the current surveillance system may not be able to detect and prevent malaria resurgence. Conclusion: An adaption to the malERA surveillance framework is proposed and recommendations made for a tailored provincial-level surveillance intervention, which will be essential to achieve elimination, and to maintain this status while the rest of the country catches up
Response to: Premature deaths attributed to ambient air pollutants: let us interpret the Robins-Greenland theorem correctly.
We thank Morfeld and Erren for their continued interest in the WHO Health risks of air pollution in Europe (HRAPIE) report (WHO Regional Office for Europe 2013). The key point of contention seems to be the interpretation of the numbers of ‘premature deaths’ associated with air pollution (or any other) exposure. In the IJPH article that is at the basis of the two letters written by Morfeld and Erren (Heroux et al. 2015), the limitations of calculating and using numbers of ‘premature deaths’ were perhaps not sufficiently explained. We elaborated on this in our first response (Heroux et al. 2016), arguing that the criticized calculation of ‘premature deaths’ produces a reasonable albeit ambiguous estimate, for which reason calculation of years of life lost is a more preferable approach. We would like to point out that the HRAPIE report really is about identification of concentration–response functions to be further used in health impact assessments, and therefore did not pretend to provide a discussion of estimating etiologic fractions. Morfeld and Erren single out the one numerical example of an impact assessment given in our paper, and that example was not a result from the HRAPIE work itself but a quote from a report from the European Commission (2013). We never intended to give the impression that these numbers refer to individually identifiable, attributable deaths, however.Peer reviewe
Economic Impact of Dengue Illness and the Cost-Effectiveness of Future Vaccination Programs in Singapore
Dengue illness is a tropical disease transmitted by mosquitoes that threatens more than one third of the worldwide population. Dengue has important economic consequences because of the burden to hospitals, work absenteeism and risk of death of symptomatic cases. Governments attempt to reduce the disease burden using costly mosquito control strategies such as habitat reduction and spraying insecticide. Despite such efforts, the number of cases remains high. Dengue vaccines are expected to be available in the near future and there is an urgent need to evaluate their cost-effectiveness, i.e. whether their cost will be justified by the reduction in disease burden they bring. For such an evaluation, we estimated the economic impacts of dengue in Singapore and the expected vaccine costs for different prices. In this way we estimated price thresholds for which vaccination is not cost-effective. This research provides useful estimates that will contribute to informed decisions regarding the adoption of dengue vaccination programs
Plant-made vaccines in support of the Millennium Development Goals
Vaccines are one of the most successful public health achievements of the last century. Systematic immunisation programs have reduced the burden of infectious diseases on a global scale. However, there are limitations to the current technology, which often requires costly infrastructure and long lead times for production. Furthermore, the requirement to keep vaccines within the cold-chain throughout manufacture, transport and storage is often impractical and prohibitively expensive in developing countries—the very regions where vaccines are most needed. In contrast, plant-made vaccines (PMVs) can be produced at a lower cost using basic greenhouse agricultural methods, and do not need to be kept within such narrow temperature ranges. This increases the feasibility of developing countries producing vaccines locally at a small-scale to target the specific needs of the region. Additionally, the ability of plant-production technologies to rapidly produce large quantities of strain-specific vaccine demonstrates their potential use in combating pandemics. PMVs are a proven technology that has the potential to play an important role in increasing global health, both in the context of the 2015 Millennium Development Goals and beyond