49 research outputs found

    Behavioral and biochemical evidence of the role of acetaldehyde in the motivational effects of ethanol

    Get PDF
    Since Chevens' report, in the early 50's, that his patients under treatment with the aldehyde dehydrogenase inhibitor, antabuse, could experience beneficial effects when drinking small volumes of alcoholic beverages, the role of acetaldehyde (ACD) in the effects of ethanol has been thoroughly investigated on pre-clinical grounds. Thus, after more than 25 years of intense research, a large number of studies have been published on the motivational properties of ACD itself as well as on the role that ethanol-derived ACD plays in the effects of ethanol. Accordingly, in particular with respect to the motivational properties of ethanol, these studies were developed following two main strategies: on one hand, were aimed to challenge the suggestion that also ACD may exert motivational properties on its own, while, on the other, with the aid of enzymatic manipulations or ACD inactivation, were aimed to test the hypothesis that ethanol-derived ACD might have a role in ethanol motivational effects. Furthermore, recent evidence significantly contributed to highlight, as possible mechanisms of action of ACD, its ability to commit either dopaminergic and opioidergic transmission as well as to activate the Extracellular signal Regulated Kinase cascade transduction pathway in reward-related brain structures. In conclusion, and despite the observation that ACD seems also to have inherited the elusive nature of its parent compound, the behavioral and biochemical evidence reviewed points to ACD as a neuroactive molecule able, on its own and as ethanol metabolite, to exert motivational effects

    From Ethanol to Salsolinol: Role of Ethanol Metabolites in the Effects of Ethanol

    Get PDF
    In spite of the global reputation of ethanol as the psychopharmacologically active ingredient of alcoholic drinks, the neurobiological basis of the central effects of ethanol still presents some dark sides due to a number of unanswered questions related to both its precise mechanism of action and its metabolism. Accordingly, ethanol represents the interesting example of a compound whose actions cannot be explained as simply due to the involvement of a single receptor/neurotransmitter, a scenario further complicated by the robust evidence that two main metabolites, acetaldehyde and salsolinol, exert many effects similar to those of their parent compound. The present review recapitulates, in a perspective manner, the major and most recent advances that in the last decades boosted a significant growth in the understanding on the role of ethanol metabolism, in particular, in the neurobiological basis of its central effects

    Simultaneous wireless and high-resolution detection of nucleus accumbens shell ethanol concentrations and free motion of rats upon voluntary ethanol intake

    Get PDF
    Highly sensitive detection of ethanol concentrations in discrete brain regions of rats voluntarily accessing ethanol, with high temporal resolution, would represent a source of greatly desirable data in studies devoted to understanding the kinetics of the neurobiological basis of ethanol's ability to impact behavior. In the present study, we present a series of experiments aiming to validate and apply an original high-tech implantable device, consisting of the coupling, for the first time, of an amperometric biosensor for brain ethanol detection, with a sensor for detecting the microvibrations of the animal. This device allows the real-time comparison between the ethanol intake, its cerebral concentrations, and their effect on the motion when the animal is in the condition of voluntary drinking. To this end, we assessed in vitro the efficiency of three different biosensor designs loading diverse alcohol oxidase enzymes (AOx) obtained from three different AOx-donor strains: Hansenula polymorpha, Candida boidinii, and Pichia pastoris. In vitro data disclosed that the devices loading H. polymorpha and C. boidinii were similarly efficient (respectively, linear region slope [LRS]: 1.98 ± 0.07 and 1.38 ± 0.04 nA/mM) but significantly less than the P. pastoris-loaded one (LRS: 7.57 ± 0.12 nA/mM). The in vivo results indicate that this last biosensor design detected the rise of ethanol in the nucleus accumbens shell (AcbSh) after 15 minutes of voluntary 10% ethanol solution intake. At the same time, the microvibration sensor detected a significant increase in the rat's motion signal. Notably, both the biosensor and microvibration sensor described similar and parallel time-dependent U-shaped curves, thus providing a highly sensitive and time-locked high-resolution detection of the neurochemical and behavioral kinetics upon voluntary ethanol intake. The results overall indicate that such a dual telemetry unit represents a powerful device which, implanted in different brain areas, may boost further investigations on the neurobiological mechanisms that underlie ethanol-induced motor activity and reward

    Steam sauna and mother roasting in Lao PDR: practices and chemical constituents of essential oils of plant species used in postpartum recovery

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Fundamental in traditional postpartum recovery in Lao PDR is the use of hotbeds, mother roasting, steam sauna and steam baths. During these treatments medicinal plants play a crucial role, but little has been published about how the treatments are carried out precisely, which species are used, the medicinal properties of these species, and the medicinal efficacy of their chemical constituents.</p> <p>Methods</p> <p>Sixty-five interviews, in 15 rural villages, with women of 4 different ethnic groups were conducted to survey confinement rituals, and postpartum plant use and salience. Essential oils from the main species used were extracted using steam distillation and the main chemical constituents characterized using gas chromatography-mass spectrometry (GC-MS).</p> <p>Results</p> <p>A total of 10 different species were used by three or more of the ethnic groups included in this study. All species were used in steam sauna and bath, but only 3 species were used in hotbed and mother roasting. Essential oils of <it>Amomum villosum, Amomum microcarpum </it>and <it>Blumea balsamifera </it>were found to contain significant amounts of the following terpenes: ÎČ-pinene, camphor, bornyl acetate, borneol, linalool, D-limonene, fenchone, terpinen-4-ol and α-terpinene.</p> <p>Conclusions</p> <p>Many of these terpenes have documented antimicrobial and analgesic properties, and some have also synergistic interactions with other terpenes. The mode of application in hotbed and mother roasting differs from the documented mechanisms of action of these terpenes. Plants in these two practices are likely to serve mainly hygienic purposes, by segregating the mother from infection sources such as beds, mats, stools, cloth and towels. Steam sauna medicinal plant use through inhalation of essential oils vapors can possibly have medicinal efficacy, but is unlikely to alleviate the ailments commonly encountered during postpartum convalescence. Steam sauna medicinal plant use through dermal condensation of essential oils, and steam bath cleansing of the perineal area is possibly a pragmatic use of the reported medicinal plants, as terpene constituents have documented antimicrobial, analgesic and anti-inflammatory properties.</p

    Molecular Mechanisms Associated with Nicotine Pharmacology and Dependence.

    Get PDF
    Tobacco dependence is a leading cause of preventable disease and death worldwide. Nicotine, the main psychoactive component in tobacco cigarettes, has also been garnering increased popularity in its vaporized form, as derived from e-cigarette devices. Thus, an understanding of the molecular mechanisms underlying nicotine pharmacology and dependence is required to ascertain novel approaches to treat drug dependence. In this chapter, we review the field's current understanding of nicotine's actions in the brain, the neurocircuitry underlying drug dependence, factors that modulate the function of nicotinic acetylcholine receptors, and the role of specific genes in mitigating the vulnerability to develop nicotine dependence. In addition to nicotine's direct actions in the brain, other constituents in nicotine and tobacco products have also been found to alter drug use, and thus, evidence is provided to highlight this issue. Finally, currently available pharmacotherapeutic strategies are discussed, along with an outlook for future therapeutic directions to achieve to the goal of long-term nicotine cessation

    Not Just from Ethanol. Tetrahydroisoquinolinic (TIQ) Derivatives: from Neurotoxicity to Neuroprotection

    No full text
    The 1,2,3,4-tetrahydroisoquinolines (TIQs) are compounds frequently described as alkaloids that can be found in the human body fluids and/or tissues including the brain. In most circumstances, TIQs may be originated as a consequence of reactions, known as Pictet-Spengler condensations, between biogenic amines and electrophilic carbonyl compounds, including ethanol’s main metabolite, acetaldehyde. Several TIQs may also be synthesized enzymatically whilst others may be formed in the body as by-products of other compounds including TIQs themselves. The biological actions of TIQs appear critically dependent on their metabolism, and nowadays, among TIQs, 1-methyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline (salsolinol), N-methyl-1-methyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline (N-methyl-(R)-salsolinol), 1-[(3,4-dihydroxyphenyl)methyl]-1,2,3,4-tetrahydroisoquinoline-6,7-diol (norlaudanosoline or tetrahydropapaveroline or THP) and 1-benzyl-1,2,3,4-tetrahydroisoquinoline (1BnTIQ) are considered as those endowed with the most potent neurotoxic actions. However, it remains to be established whether a continuous exposure to TIQs or to their metabolites might carry toxicological consequences in the short- or long-term period. Remarkably, recent findings suggest that some TIQs such as (1-[(4-hydroxyphenyl)methyl]-1,2,3,4-tetrahydroisoquinoline-6,7-diol) (higenamine) and 1-methyl-1,2,3,4-tetrahydroisoquinoline (1-MeTIQ) as well as N-methyl-tetrahydroisoquinoline (N-methyl-TIQ) exert unique neuroprotective and neurorestorative actions. The present review article provides an overview on these aspects of TIQs and summarizes those that presently appear the most significant highlights on this puzzling topic

    Acetaldehyde modulates dendritic spines in the Nucleus Accumbens after chronic treatment

    No full text
    Acetaldehyde (ACD), the first metabolite of ethanol (EtOH), appears to be involved in many EtOH psychoactive effects including activation of VTA dopamine (DA) neurons (Foddai et al., 2004; Melis et al., 2007) and motivational properties (Peana et al., 2008; 2010). The aim of this study was to investigate possible ACD-induced changes in dendritic spines of medium spiny neurons (MSN) of the Nucleus Accumbens shell (Naccs). ACD was chronically administered to rats in a modified liquid diet for a total of 21 days. Rats were divided into two groups: 1) liquid diet without ACD; 2) liquid diet with ACD (0,15 %). Rats belonging to group 2 were further divided into 2 subgroups: a) sacrificed, without ACD suspension; b) sacrificed 12 hours after ACD suspension. Subjects were then prepared for histology, utilizing a new method to visualize in the same slice spine’s morphology, TH-positive fibers and PSD-95 positive. Confocal analysis reveals a loss of dendritic spines in MSN (37%), accompanied by a reduction of TH-positive terminals (73 %) and PSD-95 positive elements (68,5%). Further analysis indicates that mature spines as long-thin are selectively affected. These changes occur only in the group b. The reduction of TH-positive terminals, PSD-95 and long-thin spines suggests a profound architectural remodeling of the accumbal synaptic triad. These results indicate functional consequences of these structural modifications and provide further evidence for an active role of ACD in synaptic plasticity in the Naccs
    corecore