5,750 research outputs found

    Hard hexagon partition function for complex fugacity

    Full text link
    We study the analyticity of the partition function of the hard hexagon model in the complex fugacity plane by computing zeros and transfer matrix eigenvalues for large finite size systems. We find that the partition function per site computed by Baxter in the thermodynamic limit for positive real values of the fugacity is not sufficient to describe the analyticity in the full complex fugacity plane. We also obtain a new algebraic equation for the low density partition function per site.Comment: 49 pages, IoP styles files, lots of figures (png mostly) so using PDFLaTeX. Some minor changes added to version 2 in response to referee report

    Integrability vs non-integrability: Hard hexagons and hard squares compared

    Full text link
    In this paper we compare the integrable hard hexagon model with the non-integrable hard squares model by means of partition function roots and transfer matrix eigenvalues. We consider partition functions for toroidal, cylindrical, and free-free boundary conditions up to sizes 40×4040\times40 and transfer matrices up to 30 sites. For all boundary conditions the hard squares roots are seen to lie in a bounded area of the complex fugacity plane along with the universal hard core line segment on the negative real fugacity axis. The density of roots on this line segment matches the derivative of the phase difference between the eigenvalues of largest (and equal) moduli and exhibits much greater structure than the corresponding density of hard hexagons. We also study the special point z=1z=-1 of hard squares where all eigenvalues have unit modulus, and we give several conjectures for the value at z=1z=-1 of the partition functions.Comment: 46 page

    Two novel evolutionary formulations of the graph coloring problem

    Full text link
    We introduce two novel evolutionary formulations of the problem of coloring the nodes of a graph. The first formulation is based on the relationship that exists between a graph's chromatic number and its acyclic orientations. It views such orientations as individuals and evolves them with the aid of evolutionary operators that are very heavily based on the structure of the graph and its acyclic orientations. The second formulation, unlike the first one, does not tackle one graph at a time, but rather aims at evolving a `program' to color all graphs belonging to a class whose members all have the same number of nodes and other common attributes. The heuristics that result from these formulations have been tested on some of the Second DIMACS Implementation Challenge benchmark graphs, and have been found to be competitive when compared to the several other heuristics that have also been tested on those graphs.Comment: To appear in Journal of Combinatorial Optimizatio

    Contextuality in the Integrated Information Theory

    Get PDF
    Integrated Information Theory (IIT) is one of the most influential theories of consciousness, mainly due to its claim of mathematically formalizing consciousness in a measurable way. However, the theory, as it is formulated, does not account for contextual observations that are crucial for understanding consciousness. Here we put forth three possible difficulties for its current version, which could be interpreted as a trilemma. Either consciousness is contextual or not. If contextual, either IIT needs revisions to its axioms to include contextuality, or it is inconsistent. If consciousness is not contextual, then IIT faces an empirical challenge. Therefore, we argue that IIT in its current version is inadequate

    Cultivo de oliveiras no Nordeste do Brasil.

    Get PDF
    bitstream/item/143304/1/ID-32150.pd
    corecore