66 research outputs found

    The Wide Area VISTA Extra-galactic Survey (WAVES)

    Get PDF
    The "Wide Area VISTA Extra-galactic Survey" (WAVES) is a 4MOST Consortium Design Reference Survey which will use the VISTA/4MOST facility to spectroscopically survey ~2million galaxies to rAB<22r_{\rm AB} < 22 mag. WAVES consists of two interlocking galaxy surveys ("WAVES-Deep" and "WAVES-Wide"), providing the next two steps beyond the highly successful 1M galaxy Sloan Digital Sky Survey and the 250k Galaxy And Mass Assembly survey. WAVES will enable an unprecedented study of the distribution and evolution of mass, energy, and structures extending from 1-kpc dwarf galaxies in the local void to the morphologies of 200-Mpc filaments at z1z\sim1. A key aim of both surveys will be to compare comprehensive empirical observations of the spatial properties of galaxies, groups, and filaments, against state-of-the-art numerical simulations to distinguish between various Dark Matter models

    Galaxy And Mass Assembly (GAMA): trends in galaxy colours, morphology, and stellar populations with large-scale structure, group, and pair environments

    Get PDF
    We explore trends in galaxy properties with Mpc-scale structures using catalogues of environment and large scale structure from the Galaxy And Mass Assembly (GAMA) survey. Existing GAMA catalogues of large scale structure, group and pair membership allow us to construct galaxy stellar mass functions for different environmental types. To avoid simply extracting the known underlying correlations between galaxy properties and stellar mass, we create a mass matched sample of galaxies with stellar masses between 9.5≤logM∗/h−2M⊙≤11 for each environmental population. Using these samples, we show that mass normalised galaxies in different large scale environments have similar energy outputs, u−r colours, luminosities, and morphologies. Extending our analysis to group and pair environments, we show galaxies that are not in groups or pairs exhibit similar characteristics to each other regardless of broader environment. For our mass controlled sample, we fail to see a strong dependence of S\'{e}rsic index or galaxy luminosity on halo mass, but do find that it correlates very strongly with colour. Repeating our analysis for galaxies that have not been mass controlled introduces and amplifies trends in the properties of galaxies in pairs, groups, and large scale structure, indicating that stellar mass is the most important predictor of the galaxy properties we examine, as opposed to environmental classifications

    Galaxy and Mass Assembly (GAMA): merging galaxies and their properties

    Get PDF
    We derive the close pair fractions and volume merger rates for galaxies in the Galaxy and Mass Assembly (GAMA) survey with -23 &lt; M-r &lt; -17 (Omega(M) = 0.27, Omega(A) = 0.73, H-0 = 100 km s(-1) Mpc(-1)) at 0.01 &lt; z &lt; 0.22 (look-back time of &lt; 2 Gyr). The merger fraction is approximately 1.5 per cent Gyr(-1) at all luminosities (assuming 50 per cent of pairs merge) and the volume merger rate is approximate to 3.5 x 10(-4) Mpc(-3) Gyr(-1). We examine how the merger rate varies by luminosity and morphology. Dry mergers (between red/spheroidal galaxies) are found to be uncommon and to decrease with decreasing luminosity. Fainter mergers are wet, between blue/discy galaxies. Damp mergers (one of each type) follow the average of dry and wetmergers. In the brighter luminosity bin (-23 &lt; M-r &lt; -20), the merger rate evolution is flat, irrespective of colour or morphology, out to z similar to 0.2. The makeup of the merging population does not appear to change over this redshift range. Galaxy growth by major mergers appears comparatively unimportant and dry mergers are unlikely to be significant in the buildup of the red sequence over the past 2 Gyr. We compare the colour, morphology, environmental density and degree of activity (BPT class, Baldwin, Phillips &amp; Terlevich) of galaxies in pairs to those of more isolated objects in the same volume. Galaxies in close pairs tend to be both redder and slightly more spheroid dominated than the comparison sample. We suggest that this may be due to &#39;harassment&#39; in multiple previous passes prior to the current close interaction. Galaxy pairs do not appear to prefer significantly denser environments. There is no evidence of an enhancement in the AGN fraction in pairs, compared to other galaxies in the same volume.</p

    Galaxy and Mass Assembly (GAMA): the effect of close interactions on star formation in galaxies

    Get PDF
    The modification of star formation (SF) in galaxy interactions is a complex process, with SF observed to be both enhanced in major mergers and suppressed in minor pair interactions. Such changes likely to arise on short time-scales and be directly related to the galaxy–galaxy interaction time. Here we investigate the link between dynamical phase and direct measures of SF on different time-scales for pair galaxies, targeting numerous star- formation rate (SFR) indicators and comparing to pair separation, individual galaxy mass and pair mass ratio. We split our sample into the higher (primary) and lower (secondary) mass galaxies in each pair and find that SF is indeed enhanced in all primary galaxies but suppressed in secondaries of minor mergers. We find that changes in SF of primaries are consistent in both major and minor mergers, suggesting that SF in the more massive galaxy is agnostic to pair mass ratio. We also find that SF is enhanced/suppressed more strongly for short-duration SFR indicators (e.g. Hα), highlighting recent changes to SF in these galaxies, which are likely to be induced by the interaction. We propose a scenario where the lower mass galaxy has its SF suppressed by gas heating or stripping, while the higher mass galaxy has its SF enhanced, potentially by tidal gas turbulence and shocks. This is consistent with the seemingly contradictory observations for both SF suppression and enhancement in close pairs

    Galaxy And Mass Assembly (GAMA): A forensic SED reconstruction of the cosmic star-formation history and metallicity evolution by galaxy type

    Get PDF
    We apply the spectral energy distribution-fitting code ProSpect to multiwavelength imaging for \sim7,000 galaxies from the GAMA survey at z<0.06z<0.06, in order to extract their star-formation histories. We combine a parametric description of the star formation history with a closed-box evolution of metallicity where the present-day gas-phase metallicity of the galaxy is a free parameter. We show with this approach that we are able to recover the observationally-determined cosmic star formation history (CSFH), an indication that stars are being formed in the correct epoch of the Universe, on average, for the manner in which we are conducting SED fitting. We also show the contribution to the CSFH of galaxies of different present-day visual morphologies, and stellar masses. This analysis suggests that half of the mass in present-day elliptical galaxies was in place 11 Gyr ago, whereas in other morphological types the stellar mass formed later, up to 6 Gyr ago for present-day irregular galaxies. Similarly, the most massive galaxies in our sample were shown to have formed half their stellar mass by 10.5 Gyr ago, whereas the least massive galaxies formed half their stellar mass as late as 4 Gyr ago (the well-known effect of "galaxy downsizing"). Finally, our metallicity approach allows us to follow the average evolution in gas-phase metallicity for populations of galaxies, and extract the evolution of the cosmic metal mass density in stars and in gas, producing results in broad agreement with observations of metal densities in the Universe

    Galaxy And Mass Assembly (GAMA): the unimodal nature of the dwarf galaxy population

    Get PDF
    In this paper we aim to (i) test the number of statistically distinct classes required to classify the local galaxy population, and, (ii) identify the differences in the physical and star formation properties of visually-distinct galaxies. To accomplish this, we analyse the structural parameters (effective radius (Reff ), effective surface brightness within Reff (hμie), central surface brightness (μ0), and S´ersic index (n)), obtained by fitting the light profile of 432 galaxies (0.002 < z 6 0.02; Viking Z-band), and their spectral energy distribution using multi-band photometry in 18 broadbands to obtain the stellar mass (M ), the star formation rate (SFR), the specific SFR (sSFR) and the dust mass (Mdust), respectively. We show that visually distinct, star-forming dwarf galaxies (irregulars, blue spheroids and low surface brightness galaxies) form a unimodal population in a parameter space mapped by hμie, μ0, n, Reff , SFR, sSFR, M , Mdust and (g − i). The SFR and sSFR distribution of passively evolving (dwarf) ellipticals on the other hand, statistically distinguish them from other galaxies with similar luminosity, while the giant galaxies clearly segregate into starforming spirals and passive lenticulars. We therefore suggest that the morphology classification scheme(s) used in literature for dwarf galaxies only reflect the observational differences based on luminosity and surface brightness among the apparent distinct classes, rather than any physical differences between them

    Galaxy And Mass Assembly (GAMA): the unimodal nature of the dwarf galaxy population

    Get PDF
    In this paper we aim to (i) test the number of statistically distinct classes required to classify the local galaxy population, and, (ii) identify the differences in the physical and star formation properties of visually-distinct galaxies. To accomplish this, we analyse the structural parameters (effective radius (Reff ), effective surface brightness within Reff (hμie), central surface brightness (μ0), and S´ersic index (n)), obtained by fitting the light profile of 432 galaxies (0.002 < z 6 0.02; Viking Z-band), and their spectral energy distribution using multi-band photometry in 18 broadbands to obtain the stellar mass (M ), the star formation rate (SFR), the specific SFR (sSFR) and the dust mass (Mdust), respectively. We show that visually distinct, star-forming dwarf galaxies (irregulars, blue spheroids and low surface brightness galaxies) form a unimodal population in a parameter space mapped by hμie, μ0, n, Reff , SFR, sSFR, M , Mdust and (g − i). The SFR and sSFR distribution of passively evolving (dwarf) ellipticals on the other hand, statistically distinguish them from other galaxies with similar luminosity, while the giant galaxies clearly segregate into starforming spirals and passive lenticulars. We therefore suggest that the morphology classification scheme(s) used in literature for dwarf galaxies only reflect the observational differences based on luminosity and surface brightness among the apparent distinct classes, rather than any physical differences between them

    Galaxy And Mass Assembly (GAMA): The absence of stellar mass segregation in galaxy groups and consistent predictions from GALFORM and EAGLE simulations

    Get PDF
    We investigate the contentious issue of the presence, or lack thereof, of satellites mass segregation in galaxy groups using the Galaxy And Mass Assembly (GAMA) survey, the GALFORM semi-analytic and the EAGLE cosmological hydrodynamical simulation catalogues of galaxy groups. We select groups with halo mass 12log(Mhalo/h1M)<14.512 \leqslant \log(M_{\text{halo}}/h^{-1}M_\odot) <14.5 and redshift z0.32z \leqslant 0.32 and probe the radial distribution of stellar mass out to twice the group virial radius. All the samples are carefully constructed to be complete in stellar mass at each redshift range and efforts are made to regularise the analysis for all the data. Our study shows negligible mass segregation in galaxy group environments with absolute gradients of 0.08\lesssim0.08 dex and also shows a lack of any redshift evolution. Moreover, we find that our results at least for the GAMA data are robust to different halo mass and group centre estimates. Furthermore, the EAGLE data allows us to probe much fainter luminosities (rr-band magnitude of 22) as well as investigate the three-dimensional spatial distribution with intrinsic halo properties, beyond what the current observational data can offer. In both cases we find that the fainter EAGLE data show a very mild spatial mass segregation at z0.22z \leqslant 0.22, which is again not apparent at higher redshift. Interestingly, our results are in contrast to some earlier findings using the Sloan Digital Sky Survey. We investigate the source of the disagreement and suggest that subtle differences between the group finding algorithms could be the root cause

    Galaxy And Mass Assembly (GAMA): the halo mass of galaxy groups from maximum-likelihood weak lensing

    Get PDF
    We present a maximum-likelihood weak lensing analysis of the mass distribution in optically selected spectroscopic Galaxy Groups (G3Cv5) in the Galaxy And Mass Assembly (GAMA) survey, using background Sloan Digital Sky Survey (SDSS) pho-tometric galaxies. The scaling of halo mass, Mh, with various group observables is investigated. Our main results are: 1) the measured relations of halo mass with group luminosity, virial volume and central galaxy stellar mass,M⋆, agree very well with predictions from mock group catalogues constructed from a GALFORM semi-analytical galaxy formation model implemented in the Millennium _CDM N-body simulation; 2) the measured relations of halo mass with velocity dispersion and projected half-abundance radius show weak tension with mock predictions, hinting at problems in the mock galaxy dynamics and their small scale distribution; 3) the median Mh|M⋆ measured from weak lensing depends more sensitively on the lognormal dispersion in M⋆ at fixed Mh than it does on the median M⋆|Mh. Our measurements suggest an intrinsic dispersion of σlog(M⋆) _ 0.15; 4) Comparing our mass estimates with those in the catalogue, we find that the G3Cv5 mass can give biased results when used to select subsets of the group sample. Of the various new halo mass estimators that we calibrate using our weak lensing measurements, group luminosity is the best single-proxy estimator of group mass
    corecore