2,689 research outputs found

    CD44+ cancer stem-like cells in EBV-associated nasopharyngeal carcinoma.

    Get PDF
    published_or_final_versio

    Structural equation modeling in oral health-related quality of life data

    Get PDF
    published_or_final_versio

    Temporal perception deficits in schizophrenia: integration is the problem, not deployment of attentions

    Get PDF
    Patients with schizophrenia are known to have impairments in sensory processing. In order to understand the specific temporal perception deficits of schizophrenia, we investigated and determined to what extent impairments in temporal integration can be dissociated from attention deployment using Attentional Blink (AB). Our findings showed that there was no evident deficit in the deployment of attention in patients with schizophrenia. However, patients showed an increased temporal integration deficit within a hundred-millisecond timescale. The degree of such integration dysfunction was correlated with the clinical manifestations of schizophrenia. There was no difference between individuals with/without schizotypal personality disorder in temporal integration. Differently from previous studies using the AB, we did not find a significant impairment in deployment of attention in schizophrenia. Instead, we used both theoretical and empirical approaches to show that previous findings (using the suppression ratio to correct for the baseline difference) produced a systematic exaggeration of the attention deficits. Instead, we modulated the perceptual difficulty of the task to bring the baseline levels of target detection between the groups into closer alignment. We found that the integration dysfunction rather than deployment of attention is clinically relevant, and thus should be an additional focus of research in schizophrenia

    HPV infection and immunochemical detection of cell-cycle markers in verrucous carcinoma of the penis

    Get PDF
    Penile verrucous carcinoma is a rare disease and little is known of its aetiology or pathogenesis. In this study we examined cell-cycle proteins expression and correlation with human papillomavirus infection in a series of 15 pure penile verrucous carcinomas from a single centre. Of 148 penile tumours, 15 (10%) were diagnosed as pure verrucous carcinomas. The expression of the cell-cycle-associated proteins p53, p21, RB, p16INK4A and Ki67 were examined by immunohistochemistry. Human papillomavirus infection was determined by polymerase chain reaction to identify a wide range of virus types. The expression of p16INK4A and Ki67 was significantly lower in verrucous carcinoma than in usual type squamous cell carcinoma, whereas the expression of p53, p21 and RB was not significantly different. p53 showed basal expression in contrast to usual type squamous cell carcinoma. Human papillomavirus infection was present in only 3 out of 13 verrucous carcinomas. Unique low-risk, high-risk and mixed viral infections were observed in each of the three cases. In conclusion, lower levels of p16INK4A and Ki67 expressions differentiate penile verrucous carcinoma from usual type squamous cell carcinoma. The low Ki67 index reflects the slow-growing nature of verrucous tumours. The low level of p16INK4A expression and human papillomavirus detection suggests that penile verrucous carcinoma pathogenesis is unrelated to human papillomavirus infection and the oncogenes and tumour suppressor genes classically altered by virus infection.Peer reviewedFinal Accepted Versio

    Entangled-State Cycles of Atomic Collective-Spin States

    Get PDF
    We study quantum trajectories of collective atomic spin states of NN effective two-level atoms driven with laser and cavity fields. We show that interesting ``entangled-state cycles'' arise probabilistically when the (Raman) transition rates between the two atomic levels are set equal. For odd (even) NN, there are (N+1)/2(N+1)/2 (N/2N/2) possible cycles. During each cycle the NN-qubit state switches, with each cavity photon emission, between the states (N/2,m>±N/2,m>)/2(|N/2,m>\pm |N/2,-m>)/\sqrt{2}, where N/2,m>|N/2,m> is a Dicke state in a rotated collective basis. The quantum number mm (>0>0), which distinguishes the particular cycle, is determined by the photon counting record and varies randomly from one trajectory to the next. For even NN it is also possible, under the same conditions, to prepare probabilistically (but in steady state) the Dicke state N/2,0>|N/2,0>, i.e., an NN-qubit state with N/2N/2 excitations, which is of particular interest in the context of multipartite entanglement.Comment: 10 pages, 9 figure

    Multiplexed, High Density Electrophysiology with Nanofabricated Neural Probes

    Get PDF
    Extracellular electrode arrays can reveal the neuronal network correlates of behavior with single-cell, single-spike, and sub-millisecond resolution. However, implantable electrodes are inherently invasive, and efforts to scale up the number and density of recording sites must compromise on device size in order to connect the electrodes. Here, we report on silicon-based neural probes employing nanofabricated, high-density electrical leads. Furthermore, we address the challenge of reading out multichannel data with an application-specific integrated circuit (ASIC) performing signal amplification, band-pass filtering, and multiplexing functions. We demonstrate high spatial resolution extracellular measurements with a fully integrated, low noise 64-channel system weighing just 330 mg. The on-chip multiplexers make possible recordings with substantially fewer external wires than the number of input channels. By combining nanofabricated probes with ASICs we have implemented a system for performing large-scale, high-density electrophysiology in small, freely behaving animals that is both minimally invasive and highly scalable

    New Physics in Bs -> J/psi phi: a General Analysis

    Full text link
    Recently, the CDF and D0 collaborations measured indirect CP violation in Bs -> J/psi phi and found a hint of a signal. If taken at face value, this can be interpreted as a nonzero phase of Bs-Bsbar mixing (beta_s), in disagreement with the standard model, which predicts that beta_s ~= 0. In this paper, we argue that this analysis may be incomplete. In particular, there can be new physics (NP) in the bbar -> sbar c cbar decay. If so, the value of beta_s is different than for the case in which NP is assumed to be present only in the mixing. We have examined several models of NP and found that, indeed, there can be significant contributions to the decay. These effects are consistent with measurements in B -> J/psi K* and Bd -> J/psi Ks. Due to the NP in the decay, polarization-dependent indirect CP asymmetries and triple-product asymmetries are predicted in Bs -> J/psi phi.Comment: 28 pages, JHEP, no figures. Considerable changes made. Abstract and main text of paper modified to alter presentation. Appendix added. References added. Conclusions unchanged

    Apoptosis-inducing factor deficiency decreases the proliferation rate and protects the subventricular zone against ionizing radiation

    Get PDF
    Cranial radiotherapy in children often leads to progressive cognitive decline. We have established a rodent model of irradiation-induced injury to the young brain. A single dose of 8 Gy was administered to the left hemisphere of postnatal day 10 (P10) mice. Harlequin (Hq) mice, carrying the hypomorphic apoptosis-inducing factor AIFHq mutation, express 60% less AIF at P10 and displayed significantly fewer dying cells in the subventricular zone (SVZ) 6 h after IR, compared with wild type (Wt) littermates. Irradiated cyclophilin A-deficient (CypA−/−) mice confirmed that CypA has an essential role in AIF-induced apoptosis after IR. Hq mice displayed no reduction in SVZ size 7 days after IR, whereas 48% of the SVZ was lost in Wt mice. The proliferation rate was lower in the SVZ of Hq mice. Cultured neural precursor cells from the SVZ of Hq mice displayed a slower proliferation rate and were more resistant to IR. IR preferentially kills proliferating cells, and the slower proliferation rate in the SVZ of Hq mice may, at least partly, explain the protective effect of the Hq mutation. Together, these results indicate that targeting AIF may provide a fruitful strategy for protection of normal brain tissue against the detrimental side effects of IR

    Toll-like receptor signaling adapter proteins govern spread of neuropathic pain and recovery following nerve injury in male mice.

    Get PDF
    BackgroundSpinal Toll-like receptors (TLRs) and signaling intermediaries have been implicated in persistent pain states. We examined the roles of two major TLR signaling pathways and selected TLRs in a mononeuropathic allodynia.MethodsL5 spinal nerve ligation (SNL) was performed in wild type (WT, C57BL/6) male and female mice and in male Tlr2-/-Tlr3-/-, Tlr4-/-, Tlr5-/-, Myd88-/-, Triflps2, Myd88/Triflps2, Tnf-/-, and Ifnar1-/- mice. We also examined L5 ligation in Tlr4-/- female mice. We examined tactile allodynia using von Frey hairs. Iba-1 (microglia) and GFAP (astrocytes) were assessed in spinal cords by immunostaining. Tactile thresholds were analyzed by 1- and 2-way ANOVA and the Bonferroni post hoc test was used.ResultsIn WT male and female mice, SNL lesions resulted in a persistent and robust ipsilateral, tactile allodynia. In males with TLR2, 3, 4, or 5 deficiencies, tactile allodynia was significantly, but incompletely, reversed (approximately 50%) as compared to WT. This effect was not seen in female Tlr4-/- mice. Increases in ipsilateral lumbar Iba-1 and GFAP were seen in mutant and WT mice. Mice deficient in MyD88, or MyD88 and TRIF, showed an approximately 50% reduction in withdrawal thresholds and reduced ipsilateral Iba-1. In contrast, TRIF and interferon receptor null mice developed a profound ipsilateral and contralateral tactile allodynia. In lumbar sections of the spinal cords, we observed a greater increase in Iba-1 immunoreactivity in the TRIF-signaling deficient mice as compared to WT, but no significant increase in GFAP. Removing MyD88 abrogated the contralateral allodynia in the TRIF signaling-deficient mice. Conversely, IFNβ, released downstream to TRIF signaling, administered intrathecally, temporarily reversed the tactile allodynia.ConclusionsThese observations suggest a critical role for the MyD88 pathway in initiating neuropathic pain, but a distinct role for the TRIF pathway and interferon in regulating neuropathic pain phenotypes in male mice

    Participant recruitment into a randomised controlled trial of exercise therapy for people with multiple sclerosis

    Get PDF
    The success of a clinical trial is often dependant on whether recruitment targets can be met in the required time frame. Despite an increase in research into the benefits of exercise in people with multiple sclerosis (PwMS), no trial has reported detailed data on effective recruitment strategies for large-scale randomised controlled trials. The main purpose of this report is to provide a detailed outline of recruitment strategies, rates and estimated costs in the Exercise Intervention for Multiple Sclerosis (ExIMS) trial to identify best practices for future trials involving multiple sclerosis (MS) patient recruitment
    corecore