50 research outputs found

    Crystal structure of a quinoenzyme: copper amine oxidase of Escherichia coli at 2 å resolution

    Get PDF
    AbstractBackground: Copper amine oxidases are a ubiquitous and novel group of quinoenzymes that catalyze the oxidative deamination of primary amines to the corresponding aldehydes, with concomitant reduction of molecular oxygen to hydrogen peroxide. The enzymes are dimers of identical 70–90 kDa subunits, each of which contains a single copper ion and a covalently bound cofactor formed by the post-translational modification of a tyrosine side chain to 2,4,5-trihydroxyphenylalanine quinone (TPQ).Results The crystal structure of amine oxidase from Escherichia coli has been determined in both an active and an inactive form. The only structural differences are in the active site, where differences in copper coordination geometry and in the position and interactions of the redox cofactor, TPQ, are observed. Each subunit of the mushroom-shaped dimer comprises four domains: a 440 amino acid C-terminal β sandwich domain, which contains the active site and provides the dimer interface, and three smaller peripheral α/β domains (D1–D3), each of about 100 amino acids. D2 and D3 show remarkable structural and sequence similarity to each other and are conserved throughout the quinoenzyme family. In contrast, D1 is absent from some amine oxidases. The active sites are well buried from solvent and lie some 35 å apart, connected by a pair of β hairpin arms.Conclusion The crystal structure of E. coli copper amine oxidase reveals a number of unexpected features and provides a basis for investigating the intriguing similarities and differences in catalytic mechanism of members of this enzyme family. In addition to the three conserved histidines that bind the copper, our studies identify a number of other conserved residues close to the active site, including a candidate for the catalytic base and a fourth conserved histidine which is involved in an interesting intersubunit interaction

    Drain tube migration into the anastomotic site of an esophagojejunostomy for gastric small cell carcinoma: short report

    Get PDF
    Intraluminal migration of a drain through an anastomotic site is a rare complication of gastric surgery. Case Presentation: We herein report the intraluminal migration of a drain placed after a lower esophagectomy and total gastrectomy with Roux-en-Y anastomosis for gastric small cell carcinoma. Persistent drainage was noted 1 month after surgery, and radiographic studies were consistent with drain tube migration. Endoscopy revealed the drain had migrated into the esophagojejunostomy anastomotic site. The drain was removed from outside of abdominal wound while observing the anastomotic site endoscopically. The patient was treated with suction via a nasogastric tube drain for 5 days, and thereafter had an uneventful recovery. Conclusions: Though drain tube migration is a rare occurrence, it should be considered in patients with persistent drainage who have undergone gastric surgery

    Perspectives on a ‘Sit Less, Move More’ Intervention in Australian Emergency Call Centres

    Get PDF
    Background: Prolonged sitting is associated with increased risk of chronic diseases. Workplace programs that aim to reduce sitting time (sit less) and increase physical activity (move more) have targeted desk-based workers in corporate and university settings with promising results. However, little is known about 'move more, sit less' programs for workers in other types of jobs and industries, such as shift workers. This formative research examines the perceptions of a 'sit less, move more' program in an Australian Emergency Call Centre that operates 24 hours per day, 7 days per week.  Methods: Participants were employees (N = 39, 72% female, 50% aged 36-55 years) recruited from Emergency Services control centres located in New South Wales, Australia. The 'sit less, move more' intervention, consisting of emails, posters and timer lights, was co-designed with the management team and tailored to the control centre environment and work practices, which already included electronic height-adjustable sit-stand workstations for all call centre staff. Participants reported their perceptions and experiences of the intervention in a self-report online questionnaire, and directly to the research team during regular site visits. Questionnaire topics included barriers and facilitators to standing while working, mental wellbeing, effects on work performance, and workplace satisfaction. Field notes and open-ended response data were analysed in an iterative process during and after data collection to identify the main themes.  Results: Whilst participants already had sit-stand workstations, use of the desks in the standing position varied and sometimes were contrary to expectations (e.g, less tired standing than sitting; standing when experiencing high call stress). Participants emphasised the "challenging" and "unrelenting" nature of their work. They reported sleep issues ("always tired"), work stress ("non-stop demands"), and feeling mentally and physically drained due to shift work and length of shifts. Overall, participants liked the initiative but acknowledged that their predominantly sitting habits were entrenched and work demands took precedence.  Conclusions: This study demonstrates the low acceptability of a 'sit less, move more' program in shift workers in high stress environments like emergency call centres. Work demands take priority and other health concerns, like poor sleep and high stress, may be more salient than the need to sit less and move more during work shifts

    Longitudinal changes in sedentary time and physical activity during adolescence

    Get PDF
    BACKGROUND: Low levels of physical activity and high time spent in sedentary activities have been associated with unfavourable health outcomes in adolescents. During adolescence, physical activity declines and sedentary time increases, however little is known about whether the magnitude of these changes differs within or between school-time, after-school time, or at weekends. METHODS: Adolescents (n = 363) participating in the PEACH (Personal and Environmental Associations with Children’s Health) project provided accelerometer data at 12 and 15 years of age. Data were collected in 2008/2009 and 2012/2013. Time spent sedentary (<100 cpm), in light physical activity (LPA (100-2295 cpm) and in moderate to vigorous physical activity (MVPA: ≥ 2296 cpm) were generated for school-time, after-school time and for weekends using school-specific start and finish times. All data were analysed in 2014. RESULTS: The proportion of time spent sedentary significantly increased during school (+8.23%, 95% CI = 7.35 to 9.13), after-school (+6.99%, 95% CI = 5.91 to 8.07) and at weekends (+6.86%, 95% CI = 5.10 to 8.62). A parallel decrease was found in the proportion of time spent in LPA during school (-7.62%, 95% CI = -8.26 to -6.98), after-school (-7.01%, 95% CI = -7.74 to -6.28) and at weekends (-6.72%, 95% CI = -7.80 to -5.65). The proportion of time spent in MVPA remained relatively stable during school (-0.64, 95% CI = -1.11 to -0.18), after-school (0.04%, 95% CI = -0.58 to 0.67) and at weekends (-0.14%, 95% CI = -1.18 to 0.90). CONCLUSIONS: Objectively measured sedentary time increased between 12 and 15 years of age during-school, after-school, and at weekends, suggesting that interventions aiming to reduce the age-associated changes in sedentary time are needed in all three time contexts. Future work should identify which sedentary activities change more than others to inform interventions which aim to minimise the increase in time spent sedentary during adolescence

    Rationale and study design for a randomised controlled trial to reduce sedentary time in adults at risk of type 2 diabetes mellitus: project stand (Sedentary Time ANd diabetes)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The rising prevalence of Type 2 Diabetes Mellitus (T2DM) is a major public health problem. There is an urgent need for effective lifestyle interventions to prevent the development of T2DM. Sedentary behaviour (sitting time) has recently been identified as a risk factor for diabetes, often independent of the time spent in moderate-to-vigorous physical activity. Project STAND (<it>Sedentary Time ANd Diabetes</it>) is a study which aims to reduce sedentary behaviour in younger adults at high risk of T2DM.</p> <p>Methods/Design</p> <p>A reduction in sedentary time is targeted using theory driven group structured education. The STAND programme is subject to piloting and process evaluation in line with the MRC framework for complex interventions. Participants are encouraged to self-monitor and self-regulate their behaviour. The intervention is being assessed in a randomised controlled trial with 12 month follow up. Inclusion criteria are a) aged 18-40 years with a BMI in the obese range; b) 18-40 years with a BMI in the overweight range plus an additional risk factor for T2DM. Participants are randomised to the intervention (n = 89) or control (n = 89) arm. The primary outcome is a reduction in sedentary behaviour at 12 months as measured by an accelerometer (count < 100/min). Secondary outcomes include physical activity, sitting/lying time using the ActivPAL posture monitor, fasting and 2 h oral glucose tolerance test, lipids, inflammatory biomarkers, body weight, waist circumference, blood pressure, illness perceptions, and efficacy beliefs for behaviour change.</p> <p>Conclusions</p> <p>This is the first UK trial to address sedentary behaviour change in a population of younger adults at risk of T2DM. The results will provide a platform for the development of a range of future multidisciplinary interventions in this rapidly expanding high-risk population.</p> <p>Trial registration</p> <p>Current controlled trials <a href="http://www.controlled-trials.com/ISRCTN08434554">ISRCTN08434554</a>, MRC project 91409.</p

    A three arm cluster randomised controlled trial to test the effectiveness and cost-effectiveness of the SMART work & life intervention for reducing daily sitting time in office workers : study protocol

    Get PDF
    Background:Office-based workers typically spend 70-85% of working hours, and a large proportion of leisure time, sitting. High levels of sitting have been linked to poor health. There is a need for fully powered randomised controlled trials (RCTs) with long-term follow-up to test the effectiveness of interventions to reduce sitting. This paper describes the methodology of a three-arm cluster RCT designed to determine the effectiveness and cost-effectiveness of the SMART Work &amp; Life intervention, delivered with and without a height-adjustable desk, for reducing daily sitting. Methods/Design:A three-arm cluster RCT of 33 clusters (660 council workers) will be conducted in three areas in England (Leicester; Manchester; Liverpool). Office groups (clusters) will be randomised to the SMART Work &amp; Life intervention delivered with (group 1) or without (group 2) a height-adjustable desk or a control group (group 3). SMART Work &amp; Life includes organisational (e.g., management buy-in, provision/support for standing meetings), environmental (e.g., relocating waste bins, printers), and group/individual (education, action planning, goal setting, addressing barriers, coaching, self-monitoring, social support) level behaviour change strategies, with strategies driven by workplace champions. Baseline, 3, 12 and 24 month measures will be taken. Objectively measured daily sitting time (activPAL3). objectively measured sitting, standing, stepping, prolonged sitting and moderate-to-vigorous physical activity time and number of steps at work and daily; objectively measured sleep (wrist accelerometry). Adiposity, blood pressure, fasting glucose, glycated haemoglobin, cholesterol (total, HDL, LDL) and triglycerides will be assessed from capillary blood samples. Questionnaires will examine dietary intake, fatigue, musculoskeletal issues, job performance and satisfaction, work engagement, occupational and general fatigue, stress, presenteeism, anxiety and depression and sickness absence (organisational records). Quality of life and resources used (e.g. GP visits, outpatient attendances) will also be assessed. We will conduct a full process evaluation and cost-effectiveness analysis. Discussion:The results of this RCT will 1) help to understand how effective an important simple, yet relatively expensive environmental change is for reducing sitting, 2) provide evidence on changing behaviour across all waking hours, and 3) provide evidence for policy guidelines around population and workplace health and well-being. Trial registration: ISRCTN11618007 . Registered on 21 January 2018

    On the evolutionary ecology of symbioses between chemosynthetic bacteria and bivalves

    Get PDF
    Mutualistic associations between bacteria and eukaryotes occur ubiquitously in nature, forming the basis for key ecological and evolutionary innovations. Some of the most prominent examples of these symbioses are chemosynthetic bacteria and marine invertebrates living in the absence of sunlight at deep-sea hydrothermal vents and in sediments rich in reduced sulfur compounds. Here, chemosynthetic bacteria living in close association with their hosts convert CO2 or CH4 into organic compounds and provide the host with necessary nutrients. The dominant macrofauna of hydrothermal vent and cold seep ecosystems all depend on the metabolic activity of chemosynthetic bacteria, which accounts for almost all primary production in these complex ecosystems. Many of these enigmatic mutualistic associations are found within the molluscan class Bivalvia. Currently, chemosynthetic symbioses have been reported from five distinct bivalve families (Lucinidae, Mytilidae, Solemyidae, Thyasiridae, and Vesicomyidae). This brief review aims to provide an overview of the diverse physiological and genetic adaptations of symbiotic chemosynthetic bacteria and their bivalve hosts
    corecore