61 research outputs found
Parameter selection for and implementation of a web-based decision-support tool to predict extubation outcome in premature infants
BACKGROUND: Approximately 30% of intubated preterm infants with respiratory distress syndrome (RDS) will fail attempted extubation, requiring reintubation and mechanical ventilation. Although ventilator technology and monitoring of premature infants have improved over time, optimal extubation remains challenging. Furthermore, extubation decisions for premature infants require complex informational processing, techniques implicitly learned through clinical practice. Computer-aided decision-support tools would benefit inexperienced clinicians, especially during peak neonatal intensive care unit (NICU) census. METHODS: A five-step procedure was developed to identify predictive variables. Clinical expert (CE) thought processes comprised one model. Variables from that model were used to develop two mathematical models for the decision-support tool: an artificial neural network (ANN) and a multivariate logistic regression model (MLR). The ranking of the variables in the three models was compared using the Wilcoxon Signed Rank Test. The best performing model was used in a web-based decision-support tool with a user interface implemented in Hypertext Markup Language (HTML) and the mathematical model employing the ANN. RESULTS: CEs identified 51 potentially predictive variables for extubation decisions for an infant on mechanical ventilation. Comparisons of the three models showed a significant difference between the ANN and the CE (p = 0.0006). Of the original 51 potentially predictive variables, the 13 most predictive variables were used to develop an ANN as a web-based decision-tool. The ANN processes user-provided data and returns the prediction 0–1 score and a novelty index. The user then selects the most appropriate threshold for categorizing the prediction as a success or failure. Furthermore, the novelty index, indicating the similarity of the test case to the training case, allows the user to assess the confidence level of the prediction with regard to how much the new data differ from the data originally used for the development of the prediction tool. CONCLUSION: State-of-the-art, machine-learning methods can be employed for the development of sophisticated tools to aid clinicians' decisions. We identified numerous variables considered relevant for extubation decisions for mechanically ventilated premature infants with RDS. We then developed a web-based decision-support tool for clinicians which can be made widely available and potentially improve patient care world wide
Office and 24-hour heart rate and target organ damage in hypertensive patients
<p>Abstract</p> <p>Background</p> <p>We investigated the association between heart rate and its variability with the parameters that assess vascular, renal and cardiac target organ damage.</p> <p>Methods</p> <p>A cross-sectional study was performed including a consecutive sample of 360 hypertensive patients without heart rate lowering drugs (aged 56 ± 11 years, 64.2% male). Heart rate (HR) and its standard deviation (HRV) in clinical and 24-hour ambulatory monitoring were evaluated. Renal damage was assessed by glomerular filtration rate and albumin/creatinine ratio; vascular damage by carotid intima-media thickness and ankle/brachial index; and cardiac damage by the Cornell voltage-duration product and left ventricular mass index.</p> <p>Results</p> <p>There was a positive correlation between ambulatory, but not clinical, heart rate and its standard deviation with glomerular filtration rate, and a negative correlation with carotid intima-media thickness, and night/day ratio of systolic and diastolic blood pressure. There was no correlation with albumin/creatinine ratio, ankle/brachial index, Cornell voltage-duration product or left ventricular mass index. In the multiple linear regression analysis, after adjusting for age, the association of glomerular filtration rate and intima-media thickness with ambulatory heart rate and its standard deviation was lost. According to the logistic regression analysis, the predictors of any target organ damage were age (OR = 1.034 and 1.033) and night/day systolic blood pressure ratio (OR = 1.425 and 1.512). Neither 24 HR nor 24 HRV reached statistical significance.</p> <p>Conclusions</p> <p>High ambulatory heart rate and its variability, but not clinical HR, are associated with decreased carotid intima-media thickness and a higher glomerular filtration rate, although this is lost after adjusting for age.</p> <p>Trial Registration</p> <p>ClinicalTrials.gov: <a href="http://www.clinicaltrials.gov/ct2/show/NCT01325064">NCT01325064</a></p
Which Lynch syndrome screening programs could be implemented in the "real world"? A systematic review of economic evaluations
Purpose: Lynch syndrome (LS) screening can significantly reduce cancer morbidity and mortality in mutation carriers. Our aim was to identify cost-effective LS screening programs that can be implemented in the "real world."Methods: We performed a systematic review of full economic evaluations of genetic screening for LS in different target populations; health outcomes were estimated in life-years gained or quality-adjusted life-years.Results: Overall, 20 studies were included in the systematic review. Based on the study populations, we identified six categories of LS screening program: colorectal cancer (CRC)-based, endometrial cancer-based, general population-based, LS family registry-based, cascade testing-based, and genetics clinic-based screening programs. We performed an in-depth analysis of CRC-based LS programs, classifying them into three additional subcategories: universal, age-targeted, and selective. In five studies, universal programs based on immunohistochemistry, either alone or in combination with the BRAF test, were cost-effective compared with no screening, while in two studies age-targeted programs with a cutoff of 70 years were cost-effective when compared with age-targeted programs with lower age thresholds. Conclusion: Universal or <70 years-age-targeted CRC-based LS screening programs are cost-effective and should be implemented in the "real world
Measuring routine childhood vaccination coverage in 204 countries and territories, 1980-2019: a systematic analysis for the Global Burden of Disease Study 2020, Release 1
Background: Measuring routine childhood vaccination is crucial to inform global vaccine policies and programme implementation, and to track progress towards targets set by the Global Vaccine Action Plan (GVAP) and Immunization Agenda 2030. Robust estimates of routine vaccine coverage are needed to identify past successes and persistent vulnerabilities. Drawing from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2020, Release 1, we did a systematic analysis of global, regional, and national vaccine coverage trends using a statistical framework, by vaccine and over time. //
Methods: For this analysis we collated 55 326 country-specific, cohort-specific, year-specific, vaccine-specific, and dose-specific observations of routine childhood vaccination coverage between 1980 and 2019. Using spatiotemporal Gaussian process regression, we produced location-specific and year-specific estimates of 11 routine childhood vaccine coverage indicators for 204 countries and territories from 1980 to 2019, adjusting for biases in country-reported data and reflecting reported stockouts and supply disruptions. We analysed global and regional trends in coverage and numbers of zero-dose children (defined as those who never received a diphtheria-tetanus-pertussis [DTP] vaccine dose), progress towards GVAP targets, and the relationship between vaccine coverage and sociodemographic development. //
Findings: By 2019, global coverage of third-dose DTP (DTP3; 81·6% [95% uncertainty interval 80·4–82·7]) more than doubled from levels estimated in 1980 (39·9% [37·5–42·1]), as did global coverage of the first-dose measles-containing vaccine (MCV1; from 38·5% [35·4–41·3] in 1980 to 83·6% [82·3–84·8] in 2019). Third-dose polio vaccine (Pol3) coverage also increased, from 42·6% (41·4–44·1) in 1980 to 79·8% (78·4–81·1) in 2019, and global coverage of newer vaccines increased rapidly between 2000 and 2019. The global number of zero-dose children fell by nearly 75% between 1980 and 2019, from 56·8 million (52·6–60·9) to 14·5 million (13·4–15·9). However, over the past decade, global vaccine coverage broadly plateaued; 94 countries and territories recorded decreasing DTP3 coverage since 2010. Only 11 countries and territories were estimated to have reached the national GVAP target of at least 90% coverage for all assessed vaccines in 2019. //
Interpretation: After achieving large gains in childhood vaccine coverage worldwide, in much of the world this progress was stalled or reversed from 2010 to 2019. These findings underscore the importance of revisiting routine immunisation strategies and programmatic approaches, recentring service delivery around equity and underserved populations. Strengthening vaccine data and monitoring systems is crucial to these pursuits, now and through to 2030, to ensure that all children have access to, and can benefit from, lifesaving vaccines
Global, regional, and national burden of disorders affecting the nervous system, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021
BACKGROUND: Disorders affecting the nervous system are diverse and include neurodevelopmental disorders, late-life neurodegeneration, and newly emergent conditions, such as cognitive impairment following COVID-19. Previous publications from the Global Burden of Disease, Injuries, and Risk Factor Study estimated the burden of 15 neurological conditions in 2015 and 2016, but these analyses did not include neurodevelopmental disorders, as defined by the International Classification of Diseases (ICD)-11, or a subset of cases of congenital, neonatal, and infectious conditions that cause neurological damage. Here, we estimate nervous system health loss caused by 37 unique conditions and their associated risk factors globally, regionally, and nationally from 1990 to 2021. METHODS: We estimated mortality, prevalence, years lived with disability (YLDs), years of life lost (YLLs), and disability-adjusted life-years (DALYs), with corresponding 95% uncertainty intervals (UIs), by age and sex in 204 countries and territories, from 1990 to 2021. We included morbidity and deaths due to neurological conditions, for which health loss is directly due to damage to the CNS or peripheral nervous system. We also isolated neurological health loss from conditions for which nervous system morbidity is a consequence, but not the primary feature, including a subset of congenital conditions (ie, chromosomal anomalies and congenital birth defects), neonatal conditions (ie, jaundice, preterm birth, and sepsis), infectious diseases (ie, COVID-19, cystic echinococcosis, malaria, syphilis, and Zika virus disease), and diabetic neuropathy. By conducting a sequela-level analysis of the health outcomes for these conditions, only cases where nervous system damage occurred were included, and YLDs were recalculated to isolate the non-fatal burden directly attributable to nervous system health loss. A comorbidity correction was used to calculate total prevalence of all conditions that affect the nervous system combined. FINDINGS: Globally, the 37 conditions affecting the nervous system were collectively ranked as the leading group cause of DALYs in 2021 (443 million, 95% UI 378–521), affecting 3·40 billion (3·20–3·62) individuals (43·1%, 40·5–45·9 of the global population); global DALY counts attributed to these conditions increased by 18·2% (8·7–26·7) between 1990 and 2021. Age-standardised rates of deaths per 100 000 people attributed to these conditions decreased from 1990 to 2021 by 33·6% (27·6–38·8), and age-standardised rates of DALYs attributed to these conditions decreased by 27·0% (21·5–32·4). Age-standardised prevalence was almost stable, with a change of 1·5% (0·7–2·4). The ten conditions with the highest age-standardised DALYs in 2021 were stroke, neonatal encephalopathy, migraine, Alzheimer's disease and other dementias, diabetic neuropathy, meningitis, epilepsy, neurological complications due to preterm birth, autism spectrum disorder, and nervous system cancer. INTERPRETATION: As the leading cause of overall disease burden in the world, with increasing global DALY counts, effective prevention, treatment, and rehabilitation strategies for disorders affecting the nervous system are needed
Insights into SusCD-mediated glycan import by a prominent gut symbiont
In Bacteroidetes, one of the dominant phyla of the mammalian gut, active uptake of large nutrients across the outer membrane is mediated by SusCD protein complexes via a “pedal bin” transport mechanism. However, many features of SusCD function in glycan uptake remain unclear, including ligand binding, the role of the SusD lid and the size limit for substrate transport. Here we characterise the β2,6 fructo-oligosaccharide (FOS) importing SusCD from Bacteroides thetaiotaomicron (Bt1762-Bt1763) to shed light on SusCD function. Co-crystal structures reveal residues involved in glycan recognition and suggest that the large binding cavity can accommodate several substrate molecules, each up to ~2.5 kDa in size, a finding supported by native mass spectrometry and isothermal titration calorimetry. Mutational studies in vivo provide functional insights into the key structural features of the SusCD apparatus and cryo-EM of the intact dimeric SusCD complex reveals several distinct states of the transporter, directly visualising the dynamics of the pedal bin transport mechanism
Integrating precision cancer medicine into healthcare—policy, practice, and research challenges
Abstract Precision medicine (PM) can be defined as a predictive, preventive, personalized, and participatory healthcare service delivery model. Recent developments in molecular biology and information technology make PM a reality today through the use of massive amounts of genetic, ‘omics’, clinical, environmental, and lifestyle data. With cancer being one of the most prominent public health threats in developed countries, both the research community and governments have been investing significant time, money, and efforts in precision cancer medicine (PCM). Although PCM research is extremely promising, a number of hurdles still remain on the road to an optimal integration of standardized and evidence-based use of PCM in healthcare systems. Indeed, PCM raises a number of technical, organizational, ethical, legal, social, and economic challenges that have to be taken into account in the development of an appropriate health policy framework. Here, we highlight some of the more salient issues regarding the standards needed for integration of PCM into healthcare systems, and we identify fields where more research is needed before policy can be implemented. Key challenges include, but are not limited to, the creation of new standards for the collection, analysis, and sharing of samples and data from cancer patients, and the creation of new clinical trial designs with renewed endpoints. We believe that these issues need to be addressed as a matter of priority by public health policymakers in the coming years for a better integration of PCM into healthcare
- …