81 research outputs found

    Characterising the CI and CI-like carbonaceous chondrites using thermogravimetric analysis and infrared spectroscopy

    Get PDF
    The CI and CI-like chondrites provide a record of aqueous alteration in the early solar system. However, the CI-like chondrites differ in having also experienced a late stage period of thermal metamorphism. In order to constrain the nature and extent of the aqueous and thermal alteration, we have investigated the bulk mineralogy and abundance of H2O in the CI and CI-like chondrites using thermogravimetric analysis and infrared spectroscopy. The CI chondrites Ivuna and Orgueil show significant mass loss (28.5–31.8 wt.%) upon heating to 1000 °C due to dehydration and dehydroxylation of abundant phyllosilicates and Fe-(oxy)hydroxides and the decomposition of Fe-sulphides, carbonates and organics. Infrared spectra for Ivuna and Orgueil have a prominent 3-μm feature due to bound −OH/H2O in phyllosilicates and Fe-(oxy)hydroxides and only a minor 11-μm feature from anhydrous silicates. These characteristics are consistent with previous studies indicating that the CI chondrites underwent near-complete aqueous alteration. Similarities in the total abundance of H2O and 3 μm/11 μm ratio suggest that there is no difference in the relative degree of hydration experienced by Ivuna and Orgueil. In contrast, the CI-like chondrites Y-82162 and Y-980115 show lower mass loss (13.8–18.8 wt.%) and contain >50 % less H2O than the CI chondrites. The 3-μm feature is almost absent from spectra of Y-82162 and Y-980115 but the 11-μm feature is intense. The CI-like chondrites experienced thermal metamorphism at temperatures >500 °C that initially caused dehydration and dehydroxylation of phyllosilicates before partial recrystallization back into anhydrous silicates. The surfaces of many C-type asteroids were probably heated through impact metamorphism and/or solar radiation, so thermally altered carbonaceous chondrites are likely good analogues for samples that will be returned by the Hayabusa-2 and OSIRIS-REx missions

    The Main Belt Comets and ice in the Solar System

    Get PDF
    We review the evidence for buried ice in the asteroid belt; specifically the questions around the so-called Main Belt Comets (MBCs). We summarise the evidence for water throughout the Solar System, and describe the various methods for detecting it, including remote sensing from ultraviolet to radio wavelengths. We review progress in the first decade of study of MBCs, including observations, modelling of ice survival, and discussion on their origins. We then look at which methods will likely be most effective for further progress, including the key challenge of direct detection of (escaping) water in these bodies

    Cohesive forces prevent the rotational breakup of rubble-pile asteroid (29075) 1950 DA

    Get PDF
    Space missions and ground-based observations have shown that some asteroids are loose collections of rubble rather than solid bodies. The physical behaviour of such ‘rubble-pile’ asteroids has been traditionally described using only gravitational and frictional forces within a granular material. Cohesive forces in the form of small van der Waals forces between constituent grains have recently been predicted to be important for small rubble piles (ten kilometres across or less), and could potentially explain fast rotation rates in the small-asteroid population. The strongest evidence so far has come from an analysis of the rotational breakup of the main-belt comet P/2013 R3, although that was indirect and poorly constrained by observations. Here we report that the kilometre-sized asteroid (29075) 1950 DA is a rubble pile that is rotating faster than is allowed by gravity and friction. We find that cohesive forces are required to prevent surface mass shedding and structural failure, and that the strengths of the forces are comparable to, though somewhat less than, the forces found between the grains of lunar regolith

    Teacher quality in the twenty first century: new lives, old truths

    Get PDF
    This chapter is based upon a keynote address to the first global teacher education summit, organised by Beijing Normal University in 2011, in which research across the world about influences which affect teachers' sense of professional identity, capacity for compassion, commitment, resilience and effectiveness long after they have graduated from their pre-service education and training programmes in universities and colleges were shared. The findings suggest that teaching pre-service students about how the conditions in which they work may enhance or diminish their capacity to teach to their best and how they might act to mediate these is a key part of the work of all teacher educators and an important focus for the work of educational researchers

    Impact of viral replication inhibition by entecavir on peripheral T lymphocyte subpopulations in chronic hepatitis B patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To investigate dynamic fluctuations of serum viral load and peripheral T-lymphocyte subpopulations of chronic hepatitis B patients and their correlation during entecavir therapy.</p> <p>Methods</p> <p>Fifty-five patients received entecavir 0.5 mg/d therapy. Serum HBV DNA load was measured by Real-Time-PCR, and the levels of peripheral T-lymphocyte subpopulations by flow cytometry biweekly, every four weeks and every eight weeks during weeks 1–12, 13–24 and 24–48, respectively. Multilevel modelling was used to analyse the relationship between these variables.</p> <p>Results</p> <p>Of the 55 patients, all HBeAg positive and with detectable HBV DNA, the majority (81.8%) had serum levels of HBV DNA over 10<sup>7 </sup>copies per milliliter. HBV viral load dropped sharply during the first two weeks. In 28 and 43 patients, the level became undetectable from week 24 and 48, respectively. Using pre-therapy level as the reference, a significant decrease in CD8<sup>+ </sup>T cells and increase in CD4<sup>+ </sup>T cells were found from week 12. Both parameters and CD4<sup>+</sup>/CD8<sup>+ </sup>ratio steadily improved throughout the 48 weeks. Multilevel analyses showed that the level of decrement of HBV DNA was associated with the increment of T-lymphocyte activities only in the later period (4–48 week). After 4 weeks of therapy, for each log<sub>10 </sub>scale decrement of HBV DNA, the percentage of CD4<sup>+ </sup>lymphocyte was increased by 0.49 and that of CD8<sup>+ </sup>decreased by 0.51.</p> <p>Conclusion</p> <p>T-lymphocyte subpopulations could be restored partially by entecavir treatment in patients with chronic hepatitis B concurrently with reduction of viremia.</p

    Aszites, Pfortaderthrombose und hepatische Enzephalopathie bei Leberzirrhose: Aktuelle Therapieempfehlungen

    Get PDF
    Treatment of Ascites, Portal Vein Thrombosis and Hepatic Encephalopathy in Patients with Cirrhosis of the Liver Background: Ascites, portal vein thrombosis and hepatic encephalopathy are important complications of cirrhosis of the liver. Guidelines for the treatment of ascites have recently been published. Method: This manuscript summarizes up-to-date recommendations on the basis of the DGVS S3 guideline and of other guidelines as well as of the authors' experience. Results and Conclusions: TIPS (transjugular intrahepatic porto-systemic shunt) is the preferred treatment for refractory or recidivant ascites unless there are contraindications. The therapy of hepatorenal syndrome type 1 with albumin and the vasoconstrictor Terlipressin has been proven effective. Treatment of portal vein thrombosis comprises a strategy of anticoagulation, TIPS and liver transplantation. The most important therapeutic strategy for hepatic encephalopathy is the search for as well as the treatment of trigger events. Rifaximin is being increasingly used for the treatment and prophylaxis of hepatic encephalopathy

    Current Antiviral Therapy of Chronic Hepatitis B: Efficacy and Safety

    Get PDF
    The treatment of chronic hepatitis B is in constant evolution. Interferon, the first agent licensed for chronic hepatitis B treatment, has been superseded by the growing popularity of nucleoside/nucleotide analogues (NA). However, resistance to these agents is a major challenge. Newer NAs, such as entecavir and tenofovir dipivoxil fumarate, have very low resistance rates and favorable safety profiles. Long-term use of these agents can effectively suppress hepatitis B virus DNA, leading to decrease in incidence of hepatitic flares, as well as in the development of cirrhosis and hepatocellular carcinoma. The efficacy and safety of various antiviral agents is discussed in this review

    FCC Physics Opportunities: Future Circular Collider Conceptual Design Report Volume 1

    Get PDF
    We review the physics opportunities of the Future Circular Collider, covering its e+e-, pp, ep and heavy ion programmes. We describe the measurement capabilities of each FCC component, addressing the study of electroweak, Higgs and strong interactions, the top quark and flavour, as well as phenomena beyond the Standard Model. We highlight the synergy and complementarity of the different colliders, which will contribute to a uniquely coherent and ambitious research programme, providing an unmatchable combination of precision and sensitivity to new physics

    HE-LHC: The High-Energy Large Hadron Collider: Future Circular Collider Conceptual Design Report Volume 4

    Get PDF
    In response to the 2013 Update of the European Strategy for Particle Physics (EPPSU), the Future Circular Collider (FCC) study was launched as a world-wide international collaboration hosted by CERN. The FCC study covered an energy-frontier hadron collider (FCC-hh), a highest-luminosity high-energy lepton collider (FCC-ee), the corresponding 100 km tunnel infrastructure, as well as the physics opportunities of these two colliders, and a high-energy LHC, based on FCC-hh technology. This document constitutes the third volume of the FCC Conceptual Design Report, devoted to the hadron collider FCC-hh. It summarizes the FCC-hh physics discovery opportunities, presents the FCC-hh accelerator design, performance reach, and staged operation plan, discusses the underlying technologies, the civil engineering and technical infrastructure, and also sketches a possible implementation. Combining ingredients from the Large Hadron Collider (LHC), the high-luminosity LHC upgrade and adding novel technologies and approaches, the FCC-hh design aims at significantly extending the energy frontier to 100 TeV. Its unprecedented centre-of-mass collision energy will make the FCC-hh a unique instrument to explore physics beyond the Standard Model, offering great direct sensitivity to new physics and discoveries

    FCC-ee: The Lepton Collider: Future Circular Collider Conceptual Design Report Volume 2

    Get PDF
    In response to the 2013 Update of the European Strategy for Particle Physics, the Future Circular Collider (FCC) study was launched, as an international collaboration hosted by CERN. This study covers a highest-luminosity high-energy lepton collider (FCC-ee) and an energy-frontier hadron collider (FCC-hh), which could, successively, be installed in the same 100 km tunnel. The scientific capabilities of the integrated FCC programme would serve the worldwide community throughout the 21st century. The FCC study also investigates an LHC energy upgrade, using FCC-hh technology. This document constitutes the second volume of the FCC Conceptual Design Report, devoted to the electron-positron collider FCC-ee. After summarizing the physics discovery opportunities, it presents the accelerator design, performance reach, a staged operation scenario, the underlying technologies, civil engineering, technical infrastructure, and an implementation plan. FCC-ee can be built with today’s technology. Most of the FCC-ee infrastructure could be reused for FCC-hh. Combining concepts from past and present lepton colliders and adding a few novel elements, the FCC-ee design promises outstandingly high luminosity. This will make the FCC-ee a unique precision instrument to study the heaviest known particles (Z, W and H bosons and the top quark), offering great direct and indirect sensitivity to new physics
    • …
    corecore