27 research outputs found
Does time of surgery influence the rate of false-negative appendectomies?:A retrospective observational study of 274 patients
Background
Multiple disciplines have described an “after-hours effect” relating to worsened mortality and morbidity outside regular working hours. This retrospective observational study aimed to evaluate whether diagnostic accuracy of a common surgical condition worsened after regular hours.
Methods
Electronic operative records for all non-infant patients (age > 4 years) operated on at a single centre for presumed acute appendicitis were retrospectively reviewed over a 56-month period (06/17/2012–02/01/2017). The primary outcome measure of unknown diagnosis was compared between those performed in regular hours (08:00–17:00) or off hours (17:01–07:59). Pre-clinical biochemistry and pre-morbid status were recorded to determine case heterogeneity between the two groups, along with secondary outcomes of length of stay and complication rate.
Results
Out of 289 procedures, 274 cases were deemed eligible for inclusion. Of the 133 performed in regular hours, 79% were appendicitis, compared to 74% of the 141 procedures performed off hours. The percentage of patients with an unknown diagnosis was 6% in regular hours compared to 15% off hours (RR 2.48; 95% CI 1.14–5.39). This was accompanied by increased numbers of registrars (residents in training) leading procedures off hours (37% compared to 24% in regular hours). Pre-morbid status, biochemistry, length of stay and post-operative complication rate showed no significant difference.
Conclusions
This retrospective study suggests that the rate of unknown diagnoses for acute appendicitis increases overnight, potentially reflecting increased numbers of unnecessary procedures being performed off hours due to poorer diagnostic accuracy. Reduced levels of staffing, availability of diagnostic modalities and changes to workforce training may explain this, but further prospective work is required. Potential solutions may include protocolizing the management of common acute surgical conditions and making more use of non-resident on call senior colleagues
Towards accurate and precise T1 and extracellular volume mapping in the myocardium: a guide to current pitfalls and their solutions
Mapping of the longitudinal relaxation time (T1) and extracellular volume (ECV) offers a means of identifying pathological changes in myocardial tissue, including diffuse changes that may be invisible to existing T1-weighted methods. This technique has recently shown strong clinical utility for pathologies such as Anderson- Fabry disease and amyloidosis and has generated clinical interest as a possible means of detecting small changes in diffuse fibrosis; however, scatter in T1 and ECV estimates offers challenges for detecting these changes, and bias limits comparisons between sites and vendors. There are several technical and physiological pitfalls that influence the accuracy (bias) and precision (repeatability) of T1 and ECV mapping methods. The goal of this review is to describe the most significant of these, and detail current solutions, in order to aid scientists and clinicians to maximise the utility of T1 mapping in their clinical or research setting. A detailed summary of technical and physiological factors, issues relating to contrast agents, and specific disease-related issues is provided, along with some considerations on the future directions of the field. Towards accurate and precise T1 and extracellular volume mapping in the myocardium: a guide to current pitfalls and their solutions. Available from: https://www.researchgate.net/publication/317548806_Towards_accurate_and_precise_T1_and_extracellular_volume_mapping_in_the_myocardium_a_guide_to_current_pitfalls_and_their_solutions [accessed Jun 13, 2017]
Genome-wide association and Mendelian randomisation analysis provide insights into the pathogenesis of heart failure
Heart failure (HF) is a leading cause of morbidity and mortality worldwide. A small proportion of HF cases are attributable to monogenic cardiomyopathies and existing genome-wide association studies (GWAS) have yielded only limited insights, leaving the observed heritability of HF largely unexplained. We report results from a GWAS meta-analysis of HF comprising 47,309 cases and 930,014 controls. Twelve independent variants at 11 genomic loci are associated with HF, all of which demonstrate one or more associations with coronary artery disease (CAD), atrial fibrillation, or reduced left ventricular function, suggesting shared genetic aetiology. Functional analysis of non-CAD-associated loci implicate genes involved in cardiac development (MYOZ1, SYNPO2L), protein homoeostasis (BAG3), and cellular senescence (CDKN1A). Mendelian randomisation analysis supports causal roles for several HF risk factors, and demonstrates CAD-independent effects for atrial fibrillation, body mass index, and hypertension. These findings extend our knowledge of the pathways underlying HF and may inform new therapeutic strategies
The genomics of heart failure: design and rationale of the HERMES consortium
AIMS: The HERMES (HEart failure Molecular Epidemiology for Therapeutic targetS) consortium aims to identify the genomic and molecular basis of heart failure. METHODS AND RESULTS: The consortium currently includes 51 studies from 11 countries, including 68 157 heart failure cases and 949 888 controls, with data on heart failure events and prognosis. All studies collected biological samples and performed genome-wide genotyping of common genetic variants. The enrolment of subjects into participating studies ranged from 1948 to the present day, and the median follow-up following heart failure diagnosis ranged from 2 to 116 months. Forty-nine of 51 individual studies enrolled participants of both sexes; in these studies, participants with heart failure were predominantly male (34–90%). The mean age at diagnosis or ascertainment across all studies ranged from 54 to 84 years. Based on the aggregate sample, we estimated 80% power to genetic variant associations with risk of heart failure with an odds ratio of ≥1.10 for common variants (allele frequency ≥ 0.05) and ≥1.20 for low-frequency variants (allele frequency 0.01–0.05) at P < 5 × 10^{-8} under an additive genetic model. CONCLUSIONS: HERMES is a global collaboration aiming to (i) identify the genetic determinants of heart failure; (ii) generate insights into the causal pathways leading to heart failure and enable genetic approaches to target prioritization; and (iii) develop genomic tools for disease stratification and risk prediction
The Role of Cardiovascular Magnetic Resonance in Sports Cardiology; Current Utility and Future Perspectives.
Cardiovascular magnetic resonance (CMR) is frequently used in the investigation of suspected cardiac disease in athletes. In this review, we discuss how CMR can be used in athletes with suspected cardiomyopathy with particular reference to volumetric analysis and tissue characterization. We also discuss the finding of non-ischaemic fibrosis in athletes describing its prevalence, distribution and clinical importance.The strengths of CMR include high spatial resolution, unrestricted imaging planes and lack of ionizing radiation. Regular physical exercise leads to cardiac remodeling that in certain situations can be clinically challenging to differentiate from various cardiomyopathies. Thorough morphological assessment by CMR is fundamental to ensuring accurate diagnosis. Developments in tissue characterization by late gadolinium enhancement and T1 mapping have the potential to be powerful additional tools in this challenging clinical situation. Using late gadolinium enhancement, it is also possible to detect non-ischaemic fibrosis in athletes who do not have overt cardiomyopathy. The mechanisms of this fibrosis are unclear; however, it does appear to be clinically important. We also review data on the prevalence of non-ischaemic fibrosis in athletes. CMR is a powerful tool to aid in the diagnosis of cardiomyopathy in athletes. It may also have a future role in assessing fibrosis related to long-term participation in sport
Recommendations on basic requirements for intensive care units: structural and organizational aspects
OBJECTIVE: To provide guidance and recommendations for the planning or renovation of intensive care units (ICUs) with respect to the specific characteristics relevant to organizational and structural aspects of intensive care medicine.
METHODOLOGY: The Working Group on Quality Improvement (WGQI) of the European Society of Intensive Care Medicine (ESICM) identified the basic requirements for ICUs by a comprehensive literature search and an iterative process with several rounds of consensus finding with the participation of 47 intensive care physicians from 23 countries. The starting point of this process was an ESICM recommendation published in 1997 with the need for an updated version.
RESULTS: The document consists of operational guidelines and design recommendations for ICUs. In the first part it covers the definition and objectives of an ICU, functional criteria, activity criteria, and the management of equipment. The second part deals with recommendations with respect to the planning process, floorplan and connections, accommodation, fire safety, central services, and the necessary communication systems.
CONCLUSION: This document provides a detailed framework for the planning or renovation of ICUs based on a multinational consensus within the ESIC
The genomics of heart failure: design and rationale of the HERMES consortium
Aims The HERMES (HEart failure Molecular Epidemiology for Therapeutic targets) consortium aims to identify the genomic and molecular basis of heart failure.Methods and results The consortium currently includes 51 studies from 11 countries, including 68 157 heart failure cases and 949 888 controls, with data on heart failure events and prognosis. All studies collected biological samples and performed genome-wide genotyping of common genetic variants. The enrolment of subjects into participating studies ranged from 1948 to the present day, and the median follow-up following heart failure diagnosis ranged from 2 to 116 months. Forty-nine of 51 individual studies enrolled participants of both sexes; in these studies, participants with heart failure were predominantly male (34-90%). The mean age at diagnosis or ascertainment across all studies ranged from 54 to 84 years. Based on the aggregate sample, we estimated 80% power to genetic variant associations with risk of heart failure with an odds ratio of >1.10 for common variants (allele frequency > 0.05) and >1.20 for low-frequency variants (allele frequency 0.01-0.05) at P < 5 x 10(-8) under an additive genetic model.Conclusions HERMES is a global collaboration aiming to (i) identify the genetic determinants of heart failure; (ii) generate insights into the causal pathways leading to heart failure and enable genetic approaches to target prioritization; and (iii) develop genomic tools for disease stratification and risk prediction.Cardiolog