664 research outputs found

    Characterization of kinetic and kinematic parameters for wearable robotics

    Get PDF
    The design process of a wearable robotic device for human assistance requires the characterization of both kinetic and kinematic parameters (KKP) of the human joints. The first step in this process is to extract the KKP from different gait analyses studies. This work is based on the human lower limb considering the following activities of daily living (ADL): walking over ground, stairs ascending/descending, ramp ascending/descending and chair standing up. The usage of different gait analyses in the characterization process, causes the data to have great variations from one study to another. Therefore, the data is graphically represented using Matlab® and Excel® to facilitate its assessment. Finally, the characterization of the KKP performed was proved to be useful in assessing the data reliability by directly comparing all the studies between each other; providing guidelines for the selection of actuator capacities depending on the end application; and highlighting optimization opportunities such as the implementation of agonist-antagonist actuators for particular human joints

    Inhibiting heat-shock protein 90 reverses sensory hypoalgesia in diabetic mice

    Get PDF
    Increasing the expression of Hsp70 (heat-shock protein 70) can inhibit sensory neuron degeneration after axotomy. Since the onset of DPN (diabetic peripheral neuropathy) is associated with the gradual decline of sensory neuron function, we evaluated whether increasing Hsp70 was sufficient to improve several indices of neuronal function. Hsp90 is the master regulator of the heat-shock response and its inhibition can up-regulate Hsp70. KU-32 (N-{7-[(2R,3R,4S,5R)-3,4-dihydroxy-5-methoxy-6,6-dimethyl-tetrahydro-2H-pyran-2-yloxy]-8-methyl-2-oxo-2H-chromen-3-yl}acetamide) was developed as a novel, novobiocin-based, C-terminal inhibitor of Hsp90 whose ability to increase Hsp70 expression is linked to the presence of an acetamide substitution of the prenylated benzamide moiety of novobiocin. KU-32 protected against glucose-induced death of embryonic DRG (dorsal root ganglia) neurons cultured for 3 days in vitro. Similarly, KU-32 significantly decreased neuregulin 1-induced degeneration of myelinated Schwann cell DRG neuron co-cultures prepared from WT (wild-type) mice. This protection was lost if the co-cultures were prepared from Hsp70.1 and Hsp70.3 KO (knockout) mice. KU-32 is readily bioavailable and was administered once a week for 6 weeks at a dose of 20 mg/kg to WT and Hsp70 KO mice that had been rendered diabetic with streptozotocin for 12 weeks. After 12 weeks of diabetes, both WT and Hsp70 KO mice developed deficits in NCV (nerve conduction velocity) and a sensory hypoalgesia. Although KU-32 did not improve glucose levels, HbA1c (glycated haemoglobin) or insulin levels, it reversed the NCV and sensory deficits in WT but not Hsp70 KO mice. These studies provide the first evidence that targeting molecular chaperones reverses the sensory hypoalgesia associated with DPN

    A Computation in a Cellular Automaton Collider Rule 110

    Full text link
    A cellular automaton collider is a finite state machine build of rings of one-dimensional cellular automata. We show how a computation can be performed on the collider by exploiting interactions between gliders (particles, localisations). The constructions proposed are based on universality of elementary cellular automaton rule 110, cyclic tag systems, supercolliders, and computing on rings.Comment: 39 pages, 32 figures, 3 table

    A Schwarz lemma for K\"ahler affine metrics and the canonical potential of a proper convex cone

    Full text link
    This is an account of some aspects of the geometry of K\"ahler affine metrics based on considering them as smooth metric measure spaces and applying the comparison geometry of Bakry-Emery Ricci tensors. Such techniques yield a version for K\"ahler affine metrics of Yau's Schwarz lemma for volume forms. By a theorem of Cheng and Yau there is a canonical K\"ahler affine Einstein metric on a proper convex domain, and the Schwarz lemma gives a direct proof of its uniqueness up to homothety. The potential for this metric is a function canonically associated to the cone, characterized by the property that its level sets are hyperbolic affine spheres foliating the cone. It is shown that for an nn-dimensional cone a rescaling of the canonical potential is an nn-normal barrier function in the sense of interior point methods for conic programming. It is explained also how to construct from the canonical potential Monge-Amp\`ere metrics of both Riemannian and Lorentzian signatures, and a mean curvature zero conical Lagrangian submanifold of the flat para-K\"ahler space.Comment: Minor corrections. References adde

    Prime movers : mechanochemistry of mitotic kinesins

    Get PDF
    Mitotic spindles are self-organizing protein machines that harness teams of multiple force generators to drive chromosome segregation. Kinesins are key members of these force-generating teams. Different kinesins walk directionally along dynamic microtubules, anchor, crosslink, align and sort microtubules into polarized bundles, and influence microtubule dynamics by interacting with microtubule tips. The mechanochemical mechanisms of these kinesins are specialized to enable each type to make a specific contribution to spindle self-organization and chromosome segregation

    A low proportion of HBeAg among HBsAg-positive pregnant women with known HIV status could suggest low perinatal transmission of HBV in Cameroon

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Transmission of hepatitis B virus (HBV) from HBV-positive mothers to their infants is common and usually occurs when the mother is hepatitis B e antigen (HBeAg) positive and/or has a high HBV DNA load. In this study, we determined the prevalence of hepatitis B surface antigen (HBsAg) and HBeAg among pregnant women with known HIV status.</p> <p>Findings</p> <p>A total of 650 pregnant women with a mean age of 26.2 years including 301 HIV-positives and 349 HIV-negatives were screened for HBsAg (Monolisa AgHBs Plus Biorad, France). Among the HBsAg-positives, HBeAg and anti-HBe were tested (Monolisa Ag HBe Plus Biorad, France). Overall, 51 (7.85%) were positive for HBsAg. The prevalence of HBsAg was not statistically different between HIV-positive and HIV-negative pregnant women [28/301 (9.3%) vs 23/349 (6.59%); p = 0.2]. None of the 45 HBsAg-positive samples was reactive for HBeAg.</p> <p>Conclusions</p> <p>Our study indicates a high prevalence of HBsAg with very low proportion of HBeAg in Cameroonian pregnant women. Since perinatal transmission of HBV is mostly effective when the mother is also HBeAg-positive, our data could suggest that perinatal transmissions play a minor role in HBV prevalence in Cameroon. In line with previous African studies, these findings further suggests that horizontal transmission could be the most common mechanism of HBV infections in Cameroon.</p

    The systematic guideline review: method, rationale, and test on chronic heart failure

    Get PDF
    Background: Evidence-based guidelines have the potential to improve healthcare. However, their de-novo-development requires substantial resources-especially for complex conditions, and adaptation may be biased by contextually influenced recommendations in source guidelines. In this paper we describe a new approach to guideline development-the systematic guideline review method (SGR), and its application in the development of an evidence-based guideline for family physicians on chronic heart failure (CHF). Methods: A systematic search for guidelines was carried out. Evidence-based guidelines on CHF management in adults in ambulatory care published in English or German between the years 2000 and 2004 were included. Guidelines on acute or right heart failure were excluded. Eligibility was assessed by two reviewers, methodological quality of selected guidelines was appraised using the AGREE instrument, and a framework of relevant clinical questions for diagnostics and treatment was derived. Data were extracted into evidence tables, systematically compared by means of a consistency analysis and synthesized in a preliminary draft. Most relevant primary sources were re-assessed to verify the cited evidence. Evidence and recommendations were summarized in a draft guideline. Results: Of 16 included guidelines five were of good quality. A total of 35 recommendations were systematically compared: 25/35 were consistent, 9/35 inconsistent, and 1/35 un-rateable (derived from a single guideline). Of the 25 consistencies, 14 were based on consensus, seven on evidence and four differed in grading. Major inconsistencies were found in 3/9 of the inconsistent recommendations. We re-evaluated the evidence for 17 recommendations (evidence-based, differing evidence levels and minor inconsistencies) - the majority was congruent. Incongruity was found where the stated evidence could not be verified in the cited primary sources, or where the evaluation in the source guidelines focused on treatment benefits and underestimated the risks. The draft guideline was completed in 8.5 man-months. The main limitation to this study was the lack of a second reviewer. Conclusion: The systematic guideline review including framework development, consistency analysis and validation is an effective, valid, and resource saving-approach to the development of evidence-based guidelines

    Optimizing Experimental Design for Comparing Models of Brain Function

    Get PDF
    This article presents the first attempt to formalize the optimization of experimental design with the aim of comparing models of brain function based on neuroimaging data. We demonstrate our approach in the context of Dynamic Causal Modelling (DCM), which relates experimental manipulations to observed network dynamics (via hidden neuronal states) and provides an inference framework for selecting among candidate models. Here, we show how to optimize the sensitivity of model selection by choosing among experimental designs according to their respective model selection accuracy. Using Bayesian decision theory, we (i) derive the Laplace-Chernoff risk for model selection, (ii) disclose its relationship with classical design optimality criteria and (iii) assess its sensitivity to basic modelling assumptions. We then evaluate the approach when identifying brain networks using DCM. Monte-Carlo simulations and empirical analyses of fMRI data from a simple bimanual motor task in humans serve to demonstrate the relationship between network identification and the optimal experimental design. For example, we show that deciding whether there is a feedback connection requires shorter epoch durations, relative to asking whether there is experimentally induced change in a connection that is known to be present. Finally, we discuss limitations and potential extensions of this work
    corecore