1,640 research outputs found
Interpreting Attoclock Measurements of Tunnelling Times
Resolving in time the dynamics of light absorption by atoms and molecules,
and the electronic rearrangement this induces, is among the most challenging
goals of attosecond spectroscopy. The attoclock is an elegant approach to this
problem, which encodes ionization times in the strong-field regime. However,
the accurate reconstruction of these times from experimental data presents a
formidable theoretical challenge. Here, we solve this problem by combining
analytical theory with ab-initio numerical simulations. We apply our theory to
numerical attoclock experiments on the hydrogen atom to extract ionization time
delays and analyse their nature. Strong field ionization is often viewed as
optical tunnelling through the barrier created by the field and the core
potential. We show that, in the hydrogen atom, optical tunnelling is
instantaneous. By calibrating the attoclock using the hydrogen atom, our method
opens the way to identify possible delays associated with multielectron
dynamics during strong-field ionization.Comment: 33 pages, 10 figures, 3 appendixe
Shear-induced chemical segregation in a Fe-based bulk metallic glass at room temperature.
Shear-induced segregation, by particle size, is known in the flow of colloids and granular media, but is unexpected at the atomic level in the deformation of solid materials, especially at room temperature. In nanoscale wear tests of an Fe-based bulk metallic glass at room temperature, without significant surface heating, we find that intense shear localization under a scanned indenter tip can induce strong segregation of a dilute large-atom solute (Y) to planar regions that then crystallize as a Y-rich solid solution. There is stiffening of the material, and the underlying chemical and structural effects are characterized by transmission electron microscopy. The key influence of the soft Fe-Y interatomic interaction is investigated by ab-initio calculation. The driving force for the induced segregation, and its mechanisms, are considered by comparison with effects in other sheared media
Parent formulation at the Lagrangian level
The recently proposed first-order parent formalism at the level of equations
of motion is specialized to the case of Lagrangian systems. It is shown that
for diffeomorphism-invariant theories the parent formulation takes the form of
an AKSZ-type sigma model. The proposed formulation can be also seen as a
Lagrangian version of the BV-BRST extension of the Vasiliev unfolded approach.
We also discuss its possible interpretation as a multidimensional
generalization of the Hamiltonian BFV--BRST formalism. The general construction
is illustrated by examples of (parametrized) mechanics, relativistic particle,
Yang--Mills theory, and gravity.Comment: 26 pages, discussion of the truncation extended, typos corrected,
references adde
Bi-harmonic superspace for N=4 d=4 super Yang-Mills
We develop N=4 d=4 bi-harmonic superspace and use it to derive a novel form
for the low-energy effective action in N=4 super Yang-Mills theory. We solve
the N=4 supergauge constraints in this superspace in terms of analytic
superfields. Using these superfields, we construct a simple functional that
respects N=4 supersymmetry and scale invariance. In components, it reproduces
all on-shell terms in the four-derivative part of the N=4 SYM effective action;
in particular, the F^4/X^4 and Wess-Zumino terms. The latter comes out in a
novel SO(3) x SO(3)-invariant form.Comment: 1+19 pages; minor corrections, references adde
First order parent formulation for generic gauge field theories
We show how a generic gauge field theory described by a BRST differential can
systematically be reformulated as a first order parent system whose spacetime
part is determined by the de Rham differential. In the spirit of Vasiliev's
unfolded approach, this is done by extending the original space of fields so as
to include their derivatives as new independent fields together with associated
form fields. Through the inclusion of the antifield dependent part of the BRST
differential, the parent formulation can be used both for on and off-shell
formulations. For diffeomorphism invariant models, the parent formulation can
be reformulated as an AKSZ-type sigma model. Several examples, such as the
relativistic particle, parametrized theories, Yang-Mills theory, general
relativity and the two dimensional sigma model are worked out in details.Comment: 36 pages, additional sections and minor correction
Spin torque resonant vortex core expulsion for an efficient radio-frequency detection scheme
Spin-polarised radio-frequency currents, whose frequency is equal to that of
the gyrotropic mode, will cause an excitation of the core of a magnetic vortex
confined in a magnetic tunnel junction. When the excitation radius of the
vortex core is greater than that of the junction radius, vortex core expulsion
is observed, leading to a large change in resistance, as the layer enters a
predominantly uniform magnetisation state. Unlike the conventional spin-torque
diode effect, this highly tunable resonant effect will generate a voltage which
does not decrease as a function of rf power, and has the potential to form the
basis of a new generation of tunable nanoscale radio-frequency detectors
Soliton pair dynamics in patterned ferromagnetic ellipses
Confinement alters the energy landscape of nanoscale magnets, leading to the
appearance of unusual magnetic states, such as vortices, for example. Many
basic questions concerning dynamical and interaction effects remain unanswered,
and nanomagnets are convenient model systems for studying these fundamental
physical phenomena. A single vortex in restricted geometry, also known as a
non-localized soliton, possesses a characteristic translational excitation mode
that corresponds to spiral-like motion of the vortex core around its
equilibrium position. Here, we investigate, by a microwave reflection
technique, the dynamics of magnetic soliton pairs confined in lithographically
defined, ferromagnetic Permalloy ellipses. Through a comparison with
micromagnetic simulations, the observed strong resonances in the subgigahertz
frequency range can be assigned to the translational modes of vortex pairs with
parallel or antiparallel core polarizations. Vortex polarizations play a
negligible role in the static interaction between two vortices, but their
effect dominates the dynamics.Comment: supplemental movies on
http://www.nature.com/nphys/journal/v1/n3/suppinfo/nphys173_S1.htm
Characterization of MHz pulse repetition rate femtosecond laser-irradiated gold-coated silicon surfaces
In this study, MHz pulse repetition rate femtosecond laser-irradiated gold-coated silicon surfaces under ambient condition were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction analysis (XRD), and X-ray photoelectron spectroscopy (XPS). The radiation fluence used was 0.5 J/cm2 at a pulse repetition rate of 25 MHz with 1 ms interaction time. SEM analysis of the irradiated surfaces showed self-assembled intermingled weblike nanofibrous structure in and around the laser-irradiated spots. Further TEM investigation on this nanostructure revealed that the nanofibrous structure is formed due to aggregation of Au-Si/Si nanoparticles. The XRD peaks at 32.2°, 39.7°, and 62.5° were identified as (200), (211), and (321) reflections, respectively, corresponding to gold silicide. In addition, the observed chemical shift of Au 4f and Si 2p lines in XPS spectrum of the irradiated surface illustrated the presence of gold silicide at the irradiated surface. The generation of Si/Au-Si alloy fibrous nanoparticles aggregate is explained by the nucleation and subsequent condensation of vapor in the plasma plume during irradiation and expulsion of molten material due to high plasma pressure
Extended supersymmetric sigma models in AdS_4 from projective superspace
There exist two superspace approaches to describe N=2 supersymmetric
nonlinear sigma models in four-dimensional anti-de Sitter (AdS_4) space: (i) in
terms of N=1 AdS chiral superfields, as developed in arXiv:1105.3111 and
arXiv:1108.5290; and (ii) in terms of N=2 polar supermultiplets using the AdS
projective-superspace techniques developed in arXiv:0807.3368. The virtue of
the approach (i) is that it makes manifest the geometric properties of the N=2
supersymmetric sigma-models in AdS_4. The target space must be a non-compact
hyperkahler manifold endowed with a Killing vector field which generates an
SO(2) group of rotations on the two-sphere of complex structures. The power of
the approach (ii) is that it allows us, in principle, to generate hyperkahler
metrics as well as to address the problem of deformations of such metrics.
Here we show how to relate the formulation (ii) to (i) by integrating out an
infinite number of N=1 AdS auxiliary superfields and performing a superfield
duality transformation. We also develop a novel description of the most general
N=2 supersymmetric nonlinear sigma-model in AdS_4 in terms of chiral
superfields on three-dimensional N=2 flat superspace without central charge.
This superspace naturally originates from a conformally flat realization for
the four-dimensional N=2 AdS superspace that makes use of Poincare coordinates
for AdS_4. This novel formulation allows us to uncover several interesting
geometric results.Comment: 88 pages; v3: typos corrected, version published in JHE
- …