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1 Introduction
In  Ostrowski [] proved the following inequality.

Theorem Let f : [, ] → R be a differentiable on (, ) function with bounded on (, )
derivative. Then, for all x ∈ [, ],
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The inequality is sharp.

Inequalities that estimate deviation of a function from its mean value using different
characteristics of the function are usually called Ostrowski type inequalities. Such inequal-
ities have many applications, in particular in the area of numerical methods, and are heav-
ily studied. See [] and the references therein for results connected with Ostrowski type
inequalities for univariate functions of bounded variation and their applications.

The goal of this article is to obtain sharp Ostrowski type inequalities for multivariate
functions and multidimensional sets of bounded variations. There are several ways to ex-
tend the notion of bounded variation to multivariate functions, see [] for a review of dif-
ferent approaches for functions of two variables; [] for the point of view that is generally
accepted in literature now.

We introduce a new definition of bounded variation that is based on the Kronrod-
Vitushkin approach []. The introduced variation of a multivariate function has (unlike
any of the Kronrod-Vitushkin variations) the following two properties: the variation does
not change if the argument of the function is multiplied by a non-zero constant; and the
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variation of a multivariate radial function is twice bigger than the variation of the gener-
ating one-dimensional function, see Properties  and  below for rigorous statements of
the properties.

The paper is organized as follows. In Section  we list the notations used throughout
the paper. In Sections  and  we introduce definitions, justify the correctness of the def-
initions, and list some properties of the sets and function variations. Section  is devoted
to Ostrowski type inequalities.

2 Notations
For a set F ⊂R

d , denote by ∂F , int F and F its boundary, interior and closure, respectively.
For arbitrary t ∈ R, set Rd

t := {(x, t) ∈ R
d : x ∈ R

d–}. For x, y ∈ R
d , by xy we denote the

segment with ends in the points x and y, i.e., xy = {( – t)x + ty : t ∈ [, ]}. For c ∈ R and
F ⊂R

d , set cF := {cx : x ∈ F}.
For two sets F, F ⊂ R

d , set ρ(F, F) := infx∈F,y∈F |x – y|, where |w| denotes the Eu-
clidean distance between the point w ∈R

d and zero element θ of Rd .
For ε ≥ , two sets F, F ⊂ R

d are called ε-disjoint if ρ(F, F) > ε. Obviously, two com-
pact sets F, F ⊂R

d are -disjoint if and only if they are disjoint. For ε > , a set F is called
ε-connected if there does not exist a partition F = F ∪ F into ε-disjoint non-empty sets
F, F. Some properties of ε-components can be found in Appendix I of [].

For an arbitrary function f : E ⊂ R
d → R and c ∈ R, denote by {f ≥ c} the set {x ∈

E : f (x) ≥ c}. Similarly, we define the sets {f ≤ c} and {f = c}.
Denote by Sd– the d –  dimensional unit sphere {x ∈R

d : |x| = }; for ε >  and x ∈R
d ,

Bd(x, ε) := {y ∈R
d : |x – y| ≤ ε}; Bd(ε) := Bd(θ , ε) and Bd := Bd().

By P
d– we denote the d –  dimensional real projective space, i.e., the set of all lines

in R
d that contain θ . The distance between two lines r, r ∈ P

d– is by definition equal
to the angle between r and r. The measure of a set A ⊂ P

d– is by definition equal to
the spherical measure of the set

⋃

l∈A l ∩ Sd–; so that the measure of Pd– is equal to the
measure of Sd–.

For each r ∈ P
d–, by �d–(r) we denote the hyperplane that contains θ and is orthogonal

to the line r; �d–(r) is considered as a d – -dimensional space with d – -dimensional
Lebesgue measure and Euclidean metric. For each β ∈ �d–(r), by l(r,β) we denote the
line that contains β and is parallel to r.

It is assumed that product topology is induced on the Cartesian product of a finite num-
ber of topological spaces and product measure is induced on the Cartesian product of a
finite number of measure spaces. By μk , k ∈ N, we denote the k-dimensional Lebesgue
measure in R

k ; by μ we denote the spherical measure on the unit sphere Sd– and the
measure on the projective space P

d–.

3 Variation of a set
3.1 Definition
Definition  Denote by N(F) the number of connected components of the set F ⊂ R

d ; 
for an empty set, and +∞ if the set of connected components is infinite.

Variation of a set F determined by r ∈ P
d– is defined by the following formula.



Kovalenko Journal of Inequalities and Applications  (2017) 2017:151 Page 3 of 16

Definition  For a compact set F ⊂R
d and a line r ∈ P

d–, set

v(F , r) := ess sup
β∈�d–(r)

N
(

F ∩ l(r,β)
)

.

Definition  For a compact set F ⊂R
d and a number p ∈ [,∞], set

vp(F) :=

⎧

⎨

⎩

( 
μPd–

∫

Pd– vp(F , r) dr)

p , p ∈ [,∞),

ess supr∈Pd– v(F , r), p = ∞.

Remark  If d = , then for all p ∈ [,∞] we set vp(F) = N(F).

Definition  Let a compact set F ⊂R
d , ε ≥  and p ∈ [,∞] be given. Set

V ε
p (F) := sup

n
∑

k=

vp(Fk),

where the supremum is taken over all partitions F =
⋃n

k= Fk of the set F into a finite num-
ber of compact pairwise ε-disjoint subsets Fk .

Remark  We write Vp(F) instead of V 
p (F). In this case the supremum in the definition

is taken over all partitions F =
⋃n

k= Fk of the set F into a finite number of compact disjoint
subsets Fk .

3.2 Correctness of the definitions
The proofs of measurability of the functions that stay under integral signs (Lemmas -)
use ideas from [] (Chapters -) and [] (Chapter ).

Throughout this subsection, we identify each point (r, x) of the space P
d– × R

d–

(r ∈ P
d–, x ∈ R

d–) with the line l(r,β), where β ∈ �d–(r) is a point with coordinates
x with respect to some orthonormal basis of �d–(r) (the basis of �d–(r) is assumed to
continuously change as r ∈ P

d– changes).
We need the following lemma.

Lemma  For every Borel set B ⊂ R
d , the set ψ(B) of all (r, x) ∈ P

d– × R
d– such that

B ∩ l(r,β) �= ∅ is measurable (Pd– ×R
d–). The set ϕ(B) := {t ∈ R : B ∩R

d
t �= ∅} is measur-

able.

Denote by ψ one of continuous maps from [, ] onto Sd–; such a map exists due to
the Hahn-Mazurkiewicz theorem; see, for example, Theorem . in []. Define a func-
tion ψ : [, ] × R

d → P
d– × R

d– using the following rule. For each (t, y) ∈ [, ] × R
d ,

let ψ(t, y) be the line l(r,β), where r ∈ P
d– is the line that contains ψ(t), and β is such

that the line l(r,β) contains the point y. It is easy to see that the function ψ is contin-
uous. Then ψ(B) = ψ(B̃), where B̃ := [, ] × B. This means that ψ(B) is a continuous
image of a Borel set B̃ ⊂ R

d+ and hence is measurable (see, for example, Theorem 
in []).

The set ϕ(B) is a projection of the Borel set B to the t-axis of Rd , hence is measurable.
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Definition  For a compact set F ⊂ R
d and ε > , denote by Nε(F) the number of ε-

components of the set F ;  for an empty set.

Lemma  Let a compact set F ⊂R
d be given. Then, for arbitrary ε > , Nε(F) is finite and

limε→ Nε(F) = N(F).

With each ε-component W of the set F , associate a ball with center in an arbitrary point
w ∈ W and radius ε

 . Balls that correspond to different ε-components of F are pairwise
disjoint; hence there can be only a finite number of such balls due to the boundedness
of F .

If F has a finite number of connected components F, . . . , Fn, then ε := mini�=j ρ(Fi, Fj) > 
due to the compactness of components of a compact set. Then Nε(F) = n = N(F) for all
ε < ε.

If N(F) = ∞, then for arbitrary n ∈N we can choose compact disjoint sets F, . . . , Fn such
that F =

⋃n
k= Fk . Then Nε(F) ≥ n for all ε < mini�=j ρ(Fi, Fj).

For a compact set F ⊂R
d and ε > , define functions

vF : Pd– ×R
d– →R, vF (r, x) = N

(

F ∩ l(r,β)
)

, ()

and

vε
F : Pd– ×R

d– →R, vε
F (r, x) = Nε

(

F ∩ l(r,β)
)

,

Nε
F : R →R, Nε

F (t) = Nε

(

F ∩R
d
t
)

.

The following lemma holds.

Lemma  Let a compact set F ⊂ R
d and ε >  be given. The function vε

F is measurable
(Pd– ×R

d–). The function Nε
F is measurable.

Consider the (countable) set 
 of all closed balls in R
d with rational centers and radii.

Let 
̃ be the set of all finite unions of the balls from 
. For each n ∈N, define 
n to be the
family of all sets of the form

⋃m
s= Bis , where m ≥ n, and {Bis}m

s= is a collection of pairwise
ε-disjoint sets from 
̃. Then the set 
n is countable for each n ∈N.

Note that the functions vε
F and Nε

F take only non-negative integer values. The sets {vε
F ≥

} = P
d– × R

d– and {Nε
F ≥ } = R are measurable. Suppose now n is a natural number.

Below we prove that

{

vε
F ≥ n

}

=
⋃

B=
⋃m

s= Bis ∈
n

( m
⋂

s=

ψ(Bis ∩ F)
∖ m

⋃

s=

ψ(∂Bis ∩ F)

)

()

and

{

Nε
F ≥ n

}

=
⋃

B=
⋃m

s= Bis ∈
n

( m
⋂

s=

ϕ(Bis ∩ F)
∖ m

⋃

s=

ϕ(∂Bis ∩ F)

)

,

where the functions ψ and ϕ are defined in Lemma . We prove equality (); the other one
can be proved using similar arguments.
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If (r, x) belongs to the right-hand side of (), then there exists a set B =
⋃m

s= Bis ∈ 
n

such that l(r,β) ∩ Bis ∩ F is a non-empty set strictly inside Bis , s = , . . . , m. Since the sets
that constitute B are ε-disjoint, by the definition of 
n, we obtain that vε

F (r, x) ≥ m ≥ n
and hence (r, x) ∈ {vε

F ≥ n}.
Let (r, x) ∈ {vε

F ≥ n} and F, . . . , Fm, m ≥ n be all ε-components of the set l(r,β)∩F . Since
mini�=j ρ(Fi, Fj) > ε, there exists δ >  such that mini�=j ρ(Fi, Fj) > ε + δ. Consider a finite
cover C of the compact set l(r,β) ∩ F by open balls with rational centers and radii such
that each ball has diameter less than δ and contains some point from l(r,β) ∩ F . Denote
by Bk the union of closures of all balls from the cover C that intersect Fk , k = , . . . , m.
Then

⋃m
k= Bk belongs to 
n by construction, and hence (r, x) belongs to the right-hand

side of ().
Since F is a closed set and 
n is a countable set, Lemma  implies that the sets {vε

F ≥ n}
and {Nε

F ≥ n} are measurable; hence the functions vε
F and Nε

F are measurable.

Lemma  The function vF defined by () is measurable (Pd– × R
d–) for each compact

F ⊂R
d .

For each fixed (r, x) ∈ P
d– × R

d–, one has limε→ vε
F (r, x) = vF (r, x) due to Lemma .

Hence the measurability of vF is a consequence of the measurability of vε
F , ε > , stated

in Lemma .
Tonelli’s theorem and Lemma  imply that the function vp(F) is well defined for every

 ≤ p ≤ ∞ and compact F ⊂ R
d ; hence the functions V ε

p (F) are also well defined for all
ε ≥ .

3.3 Some properties of the sets variation
The following property is a direct consequence of the definitions.

Property  Let p ∈ [,∞], ε ≥  and F ⊂ R
d be a compact set. Then vp(F) ≤ V ε

p (F). If F
is ε-connected, then vp(F) = V ε

p (F).

Property  Let p ∈ [,∞] and F ⊂R
d be a compact set. Then

Vp(F) = lim
ε→

V ε
p (F). ()

From the definition it follows that V ε
p (F) ≤ V ε

p (F) whenever ε > ε. This implies that
limε→ V ε

p (F) exists and does not exceed Vp(F).
Assume that Vp(F) < ∞. Then, for arbitrary δ > , there exists a partition F =

⋃n(δ)
k= Fk

of the set F into pairwise disjoint compact sets Fk such that Vp(F) ≤ ∑n(δ)
k= vp(Fk) + δ. Set

ε := mini�=j ρ(Fi, Fj). Then ε >  and for all ε < ε V ε
p (F) ≥ Vp(F) – δ. This implies ().

The case when V ε
p (F) = ∞ can be considered in a similar way.

Property  Let n ∈ N and pairwise disjoint compact sets F, . . . , Fn ⊂ R
d be given. Then,

for all p ∈ [,∞], vp(
⋃n

k= Fk) ≤ ∑n
k= vp(Fk).

It is sufficient to prove the property in the case n = . Set F := F ∪ F.
Since F and F are compact disjoint sets, we have ρ(F, F) > , and hence, for arbitrary

r ∈ P
d– and β ∈ �d–(r), one has N(F ∩ l(r,β)) = N(F ∩ l(r,β)) + N(F ∩ l(r,β)). This
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implies that v(F , r) ≤ v(F, r) + v(F, r) for all r ∈ P
d–, and hence vp(F) ≤ vp(F) + vp(F) for

all p ∈ [,∞].

Property  Assume n ∈N, ε ≥  and pairwise ε-disjoint compact sets F, . . . , Fn ⊂R
d are

given. Then, for all p ∈ [,∞],

V ε
p

( n
⋃

k=

Fk

)

=
n

∑

k=

V ε
p (Fk).

It is sufficient to prove the property in the case n = . Set F := F ∪ F.
Let {Tk}m

k=, m ∈ N, be a partition of the set F into compact pairwise ε-disjoint subsets.
Then, by Property ,

m
∑

k=

vp(Tk) =
m

∑

k=

vp
(

(Tk ∩ F) ∪ (Tk ∩ F)
)

≤
m

∑

k=

vp(Tk ∩ F) +
m

∑

k=

vp(Tk ∩ F)

≤ V ε
p (F) + V ε

p (F)

since {Tk ∩ F}m
k= and {Tk ∩ F}m

k= are partitions of the sets F and F into pairwise ε-
disjoint compact subsets. This implies that

V ε
p (F) ≤ V ε

p (F) + V ε
p (F).

On the other hand, for arbitrary partitions of the sets F and F into compact ε-disjoint
sets {T 

k }s
k= and {T

k }m
k= respectively, s, m ∈ N,

{

T 
k
}s

k= ∪ {

T
k
}m

k=

is a partition of the set F into compact ε-disjoint sets, and hence

V ε
p (F) ≥ V ε

p (F) + V ε
p (F).

Property  If ε ≥  and F ⊂ R
d is a compact set that has exactly n ∈ N ε-connected

components F, . . . , Fn, then, for all p ∈ [,∞], V ε
p (F) =

∑n
k= vp(Fk).

Note that each ε-connected component of a compact set is compact. Hence, by Proper-
ties  and , V ε

p (F) =
∑n

k= V ε
p (Fk) =

∑n
k= vp(Fk).

Property  If F ⊂ R
d is a compact set, α �=  and αF := {αx : x ∈ F}, then for arbitrary

p ∈ [,∞] vp(F) = vp(αF) and Vp(F) = Vp(αF).

The property follows from the observation that for arbitrary r ∈ P
d– and β ∈ �d–(r) one

has N(F ∩ l(r,β)) = N(αF ∩ l(r,αβ)) and hence v(αF , r) = v(F , r).
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4 Variation of a function
4.1 Definition
Definition  Let a set E ⊂R

d and a function f : E →R be given. For t ∈R, the set

L(f ; t) :=
{

x ∈ E : f (x) = t
}

is called a level set of the function f .

The variation of a continuous function is given by the following definition.

Definition  Let E ⊂ R
d , f : E →R be a continuous on a compact subset F ⊂ E function,

and p ∈ [,∞]. Set

vp(f ; F) :=
∫ ∞

–∞
vp

(

F ∩ L(f ; t)
)

dt.

If F is locally connected, then set

Vp(f ; F) :=
∫ ∞

–∞
Vp

(

F ∩ L(f ; t)
)

dt.

If F = E, then we write vp(f ) and Vp(f ) instead of vp(f ; E) and Vp(f ; E), respectively.

4.2 Correctness of the definitions
We need to prove that the functions under the integral signs are measurable.

Lemma  Let E ⊂R
d , f : E →R be a continuous on a compact subset F ⊂ E function, and

p ∈ [,∞]. Then the function vp(F ∩ L(f ; ·)) is measurable.

Without loss of generality, we may assume that Rd ⊃ F = E, and we need to prove that
the function vp(L(f ; ·)) is measurable. Consider the graph

(f ) :=
{

(x, t) ∈R
d+ : x ∈ E, f (x) = t

}

()

of the function f and two functions v(f ) : Pd × R
d → R and vf : R × P

d– × R
d– → R

defined by the formula vf (t, r, x) = vL(f ;t)(r, x) (see () for the definition of the function vF ).
Since the set E is compact and the function f is continuous on E, the set (f ) ⊂ R

d+ is
compact. This, by Lemma , implies that the function v(f ) is measurable (Pd ×R

d).
Recall that Rd+

 = {(x, ) ∈R
d+ : x ∈ R

d}. The function

φ : R× P
d– ×R

d– → P
d ×R

d ∩ {

(R, y) ∈ P
d ×R

d : R ⊂R
d+


}

that maps a point (t, r, x) to the point (R, y) with R = {(z, ), z ∈ r} and y = (x, t) is continuous
and has continuous inverse. Moreover, for arbitrary (t, r, x) ∈ R× P

d– ×R
d–, we obtain

vf (t, r, x) = v(f )(φ(t, r, x)). Hence, for arbitrary c ∈R, the function φ maps the set

{

(t, r, x) ∈R× P
d– ×R

d– : vf (t, r, x) ≥ c
}
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and the set

{

(R, y) ∈ P
d ×R

d : v(f )(R, y) ≥ c
} ∩ {

(R, y) ∈ P
d ×R

d : R ⊂R
d+


}

.

The latter is an intersection of a measurable (due to measurability of v(f )) set and a closed
set; hence the former is also a measurable set. This means that the function vf is mea-
surable (R × P

d– × R
d–), and hence the statement of the lemma is true due to Tonelli’s

theorem.
The following result is well known (see, for example, [], Lemma , or [], Lemma  in

Chapter ).

Lemma  For an arbitrary function f : E → R, denote by Textr the set of t ∈ R such that
L(f ; t) contains an extremum point. Then Textr is at most countable.

Lemma  Let E ⊂ R
d , f : E → R be a continuous on a compact locally connected subset

F ⊂ E function, and p ∈ [,∞]. Then the function Vp(F ∩ L(f ; ·)) is measurable.

Without loss of generalization, we may assume that F = E. Taking into account Prop-
erty , it is sufficient to prove that each of the functions V ν

p (L(f ; ·)) is measurable, ν > .
Let ν >  be fixed. The function Nf (t) := Nν(L(f ; t)) = Nν

(f )(t) is measurable due to
Lemma  ((f ) is defined by ()). Due to Lemma , for each k = , , . . . , the set Tk :=
{Nf = k} \ Textr is measurable; moreover, obviously these sets are pairwise disjoint.

Let c ∈ R be given. Then

{

V ν
p
(

L(f ; ·)) ≤ c
} \ Textr =

⋃

k∈N

{

t ∈ Tk : V ν
p
(

L(f ; t)
) ≤ c

}

and it is sufficient to prove that for each k ∈ N the set {t ∈ Tk : V ν
p (L(f ; t)) ≤ c} is measur-

able.
Let some k ∈ N and t∗ ∈ Tk be fixed. The set L(f ; t∗) contains exactly k ν-connected

components F, . . . , Fk . Each of the components is a compact set, hence there exists ε > 
such that the sets Us(ε) = {x : ρ(x, Fs) < ε}, s = , . . . , k, are pairwise ν-disjoint. Set U(ε) :=
⋃k

s= Us(ε).
There exists δ >  such that L(f ; t) ⊂ U(ε) for all t ∈ (t∗ – δ, t∗ + δ). Really, assume the

contrary, suppose that there exists a sequence an, an →  as n → ∞, such that each of the
level sets L(f ; t∗ + an) contains a point xn /∈ U(ε). Switching to a subsequence, if needed,
we may assume that the sequence xn converges to some x ∈R

d . Since U(ε) is an open set,
x /∈ U(ε). However, this is impossible since f is continuous, and hence f (x) = t∗.

For each s = , . . . , k, consider an arbitrary point xs ∈ Fs. Since the level set L(f , t∗) does
not contain extremums, F is locally connected and f is continuous; for small enough εs >
, the set f (Bd(xs, εs)) contains a neighborhood (t∗ – δs, t∗ + δs) of t∗ (δs > ). Hence, for
arbitrary t ∈ (t∗ – δs, t∗ + δs), the level set L(f ; t) contains at least one ν-component inside
Us(ε). This means that there exists δ = δ(t∗) >  such that each of the level sets L(f , t),
t ∈ (t∗ – δ, t∗ + δ) contains at least one ν-component inside Us(ε), s = , . . . , k. Hence, for all
t ∈ Tk ∩ (t∗ – δ, t∗ + δ), the level set L(f ; t) contains exactly one ν-component inside Us(ε),
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s = , . . . , k. This implies that for all t ∈ Tk ∩ (t∗ – δ, t∗ + δ)

V ν
p
(

L(f ; t)
)

=
k

∑

s=

vp
(

L(f ; t) ∩ Us(ε)
)

()

due to Property .
For each t∗ ∈ Tk , set W (t∗) := (t∗ – δ(t∗), t∗ + δ(t∗)); the sets W (t∗), t∗ ∈ Tk , constitute

an open cover of the set Tk . Since R is a Lindelöf space, we can find a countable subcover
W, W, . . . of Tk . Set W̃ := W ∩ Tk , W̃m := (Wm \ ⋃m–

s= Ws) ∩ Tk , m = , , . . . . We obtain
a countable partition of the set Tk into pairwise disjoint measurable subsets W̃m, m ∈ N,
such that on each of the sets W̃m we have representation () of the function V ν

p (L(f ; ·))
(the sets Us(ε), s = , . . . , k, might be different for different m ∈ N). Due to Lemma , this
implies the measurability of the set

{

t ∈ Tk : V ν
p
(

L(f ; t)
) ≤ c

}

=
⋃

m∈N

(

W̃m ∩
{ k

∑

s=

vp
(

L(f ; t) ∩ Us(ε)
) ≤ c

})

and hence the lemma is proved.

4.3 Some properties of the function variation
Below we list some properties of the function variation. Everywhere p ∈ [,∞] and a com-
pact set F ⊂R

d are fixed, f is continuous on F function. For properties of Vp(f ), the set F
is further assumed to be locally connected.

Property  vp(f ) and Vp(f ) are non-negative. If f is constant, then vp(f ) = Vp(f ) = .

The fact that variations are non-negative follows from the definition. If f is constant,
then it has exactly one non-empty level set.

Property  If α,β ∈R, then vp(α · f + β) = |α|vp(f ) and Vp(α · f + β) = |α|Vp(f ).

Note that L(α · f + β ; t) = L(f ;α– · (t – β)) for all α �=  and β , t ∈ R. Making substitution
s = α– · (t – β) in the integrals from Definition , we obtain the required equalities. In the
case α = , the property follows from Property .

Property  For arbitrary α �= , vp(f ; F) = vp(f (α·);α–F) and

Vp(f ; F) = Vp
(

f (α·);α–F
)

.

The property follows from Property .

Property  Let t ∈ R be such that F \ L(f ; t) has exactly n ≥  connected components
F, F, . . . , Fn. Assume that for all k = , . . . , n, Fk \Fk ⊂ L(f ; t). Then vp(f ; F) ≤ ∑n

k= vp(f ; Fk)
and Vp(f ; F) =

∑n
k= Vp(f ; Fk).

Consider arbitrary s ∈ R, s �= t. For k = , . . . , n, set Wk := Fk ∩ L(f ; s). Then the set Wk is
closed, k = , . . . , n, and Wk ⊂ Fk due to conditions of the property and the fact that dif-
ferent level sets of any function are disjoint. This means that Wk are compact pairwise
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disjoint sets. From Properties  and  it follows that Vp(L(f ; s)) =
∑n

k= Vp(Fk ∩ L(f ; s)) and
vp(L(f ; s)) ≤ ∑n

k= vp(Fk ∩ L(f ; s)). The statement of the property now follows from Defini-
tion .

Property  If d =  and f : [, ] →R is a continuous function, then for all p ∈ [,∞]

vp
(

f ; [, ]
)

= Vp
(

f ; [, ]
)

=


∨



f .

Remark 
∨

 f is the classical variation of a univariate function f on [, ]. We allow
∨

 f
to be +∞ in the case when f is not a function of bounded variation.

The Banach indicatrix theorem [] states that
∨

 f is equal to the integral over t ∈ R

of number of points in L(f ; t). In the definition of vp(f ; [, ]), the number of components
of L(f ; t) is integrated over t ∈ R. Each component of a compact set in R is a point or a
segment. The family of level sets L(f ; t) that contain a segment as a connected component
is at most countable because each of such level sets contains extremum (see Lemma ).
Hence vp(f ; [, ]) =

∨
 f . It is easy to see that vp(f ; [, ]) = Vp(f ; [, ]).

Property  Let ϕ : [, ] → R be a continuous function and d ∈ N. Let fϕ : Bd → R,
fϕ(x) = ϕ(|x|). Then, for all p ∈ [,∞],

vp
(

fϕ ; Bd) = Vp
(

fϕ ; Bd) =  ·


∨



ϕ.

In the case d = , the property follows from Property , so we can assume that d ≥ . Let
arbitrary t �= ϕ() be fixed. For arbitrary r ∈ P

d– and β ∈ �d–(r) the number N(L(fϕ ; t) ∩
l(r,β)) can be obtained by the following procedure: consider the line r = l(r, θ ) and mark
points of the set L(fϕ ; t)∩ l(r, θ ); cut the interval (–|β|, |β|) from the line and stick the points
–|β| and |β| together; the number of components of marked points on the obtained ‘cut’
line is equal to N(L(fϕ ; t) ∩ l(r,β)). This shows that for arbitrary β

N
(

L(fϕ ; t) ∩ l(r,β)
) ≤ N

(

L(fϕ ; t) ∩ l(r, θ )
)

. ()

From the choice of t it follows that

θ /∈ L(fϕ ; t), ()

and hence there exists ε >  such that B(ε) ∩ L(fϕ ; t) = ∅. This implies that the set
L(fϕ ; t) ∩ l(r, θ ) does not contain points x with |x| < ε and hence for all β such that |β| < ε

() becomes equality. This implies that v(L(fϕ ; t), r) = N(L(fϕ ; t)∩ l(r, θ )). From () it follows
that N(L(fϕ ; t)∩ l(r, θ )) =  ·N(L(ϕ; t)). Equality vp(fϕ ; B) =  ·∨

 ϕ follows from Property 
now. Equality vp(fϕ ; B) = Vp(fϕ ; B) follows from the geometry of the level sets of fϕ .

5 Ostrowski type inequalities
5.1 Auxiliary results
Lemma  Let d ∈ N, d ≥ , ε > , x ∈ R

d , r ∈ P
d– and a measurable set F ⊂ Bd(x, ε) be

given. For arbitrary A ∈ (, ), there exists α = α(A) ∈ (, ) that does not depend on ε, x
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and r such that

μd–{β ∈ �d–(r) : F ∩ l(r,β) �= ∅}

> A · μd–Bd–(ε)

whenever μdF > α · μdBd(ε).

The fact that α does not depend on ε follows from the observation that

μdF
μdBd(ε)

=
μd( 

ε
F)

μdBd

and

μd–{β ∈ �d–(r) : F ∩ l(r,β) �= ∅}
μd–Bd–(ε)

=
μd–{β ∈ �d–(r) : 

ε
F ∩ l(r,β) �= ∅}

μd–Bd– .

The fact that α is independent of x and r is obvious. The existence of α follows from the
equality

μdF =
∫

�d–(r)∩Bd(y,ε)
μ(l(r,β) ∩ F

)

μd–(dβ), ()

where y ∈ �d–(r) is such that the line l(r, y) contains x and equality μd–(�d–(r) ∩
Bd(y, ε)) = μd–Bd–.

Lemma  Let p ∈ [,∞), A >  and B ∈ [, A] be given. Then


A

(

B + p(A – B)
) ≥

(

 –
B
A

)p

.

It is sufficient to prove that the function ϕ(x) = p + ( – p)x – ( – x)p is non-negative
on [, ]. Since ϕ() = ϕ() = , the function ϕ′ has at least one zero on (, ). The function
ϕ′(x) = p( – x)p– +  – p is decreasing on [, ], hence has at most one zero on (, ). This
implies that ϕ′() >  and hence the function ϕ is increasing on [, x∗] and is decreasing
on [x∗, ], where x∗ is zero of ϕ′ on (, ); hence ϕ is non-negative on [, ].

5.2 Main results
The following theorem is the main tool to prove Ostrowski type inequalities for functions
and sets of bounded variation below.

Theorem  Let d ∈N and two sets F , W ⊂ Bd be given. Assume that the following proper-
ties hold:

. F is measurable and θ /∈ F ;
. W is closed and θ /∈ W ; and
. If x ∈ F and y ∈ Bd \ F , then xy ∩ W �= ∅.

Then, for all p ∈ [,∞],

μdF ≤ μdBd


vp(W ). ()
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The inequality is sharp in the sense that for arbitrary ε >  there exist sets F and W that
satisfy conditions above and such that

μdF >
(

μdBd


– ε

)

vp(W ).

If () becomes equality, then μdF = .

We will prove Theorem  in the next subsections. Here we state two consequences of
this theorem, which can be considered as Ostrowski type inequalities.

Theorem  Let d ∈ N and a continuous function f : Bd → R be given. Then, for all p ∈
[,∞],

∣
∣
∣
∣


μdBd

∫

Bd
f (x) dx – f (θ )

∣
∣
∣
∣
≤ vp(f )


.

The inequality is sharp. It becomes equality only in the case when f is constant.

Due to Property , we can assume that f (θ ) = , and it is sufficient to prove that

∫

Bd
f (x) dx ≤ μdBd


vp(f ). ()

Consider a set

 :=
{

(x, t) ∈ Bd × [,∞) : f (x) ≥ t
}

.

Then
∫

Bd
f (x) dx ≤ μd+ =

∫

t≥
μd( ∩R

d+
t

)

dt. ()

For each t > , consider the sets F :=  ∩ R
d+
t and W := (f ) ∩ R

d+
t (see () for the defi-

nition of (f )). Both F and W are closed sets that do not contain θ since f (θ ) = . If x ∈ F
and y ∈ Bd \ F , then f (x) ≥ t and f (y) < t and hence the segment xy contains a point z with
f (z) = t, i.e., xy ∩ W �= ∅. This means that all the conditions of Theorem  are satisfied and
hence

μd( ∩R
d+
t

)

= μd(F) ≤ μdBd


vp(W ) =

μdBd


vp

(

L(f ; t)
)

with equality possible only in the case when μdF = . Taking into account (), we obtain

μd+ ≤ μdBd



∫

t≥
vp

(

L(f ; t)
)

dt ≤ μdBd



∫

t∈R
vp

(

L(f ; t)
)

dt =
μdBd


vp(f )

and inequality () is proved; moreover, due to the continuity of f , we obtain that equality
in () can hold only if f ≡ .
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For all ε > , consider the function ϕε : [, ] →R, ϕε(t) =  for t ≥ ε, ϕε() =  and ϕε is
linear on [, ε]. Due to Property , for the radial function fε(x) : Bd → R, fε(x) = ϕε(|x|),
and arbitrary p ∈ [,∞] vp(fε) = ; moreover,

∫

Bd fε(x) dx → μdBd as ε → . This proves
the sharpness of the stated inequality.

Theorem  Let d ∈N and a closed set F ⊂ Bd be given. If θ /∈ F , then for all p ∈ [,∞]

μdF ≤ μdBd


vp(F).

The inequality is sharp. If equality holds, then μdF = .

It is enough to apply Theorem  with W = F ; all three conditions of Theorem  are
satisfied.

For arbitrary ε > , consider a set Fε := {x ∈ Bd : |x| ≥ ε}. For all p ∈ [,∞], vp(Fε) = ;
μdFε → μdBd as ε → . This proves that the stated inequality is sharp.

Remark  In all three theorems variation vp can be substituted by Vp due to Property .
The inequalities will remain sharp.

Remark  Properties  and  state that Vp is additive. This gives motivation to call Vp a
variation, rather than vp.

5.3 More auxiliary results
Denote by F̃ the set of all points x ∈ F such that limδ→+

μd(F∩Bd(x,δ))
μdBd(δ) = . Then F̃ ∩ Sd– = ∅

and, by the Lebesgue density theorem,

μdF̃ = μdF . ()

Lemma  Assume that the conditions of Theorem  hold. If r ∈ P
d– is such that v(W , r) =

, then for arbitrary β ∈ �d– either F̃ ⊃ int Bd ∩ l(r,β), or F̃ ∩ l(r,β) = ∅.

Assume that for some β ∈ �d–(r) there exist x ∈ F̃ ∩ l(r,β) and y ∈ (int Bd ∩ l(r,β)) \ F̃ .
From the definition of F̃ it follows that there exist a >  and a sequence ρn →  as n → ∞
such that μd(Bd(y,ρn) \ F) ≥ a · μdBd(ρn) for all n ∈ N. From () (with F substituted by
Bd(y,ρn) \ F) it follows that there exists A >  such that

μd–
(ρn) > A · μd–Bd–(ρn) ()

for all n ∈N, where


(ρn) =
{

β ∈ �d–(r) :
(

Bd(y,ρn) \ F
) ∩ l(r,β) �= ∅}

.

Since x ∈ F̃ , there exists δ >  such that for all ρ < δ one has μd(Bd(x,ρ) ∩ F) ≥ α( – A) ·
μdBd(ρ) (the number α( – A) is defined in Lemma ). Lemma  implies that

μd–
(ρ) > ( – A) · μd–Bd–(ρ) ()
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for all ρ ≤ δ, where


(ρ) =
{

β ∈ �d–(r) : Bd(x,ρ) ∩ F ∩ l(r,β) �= ∅}

.

Choose n so big that ρn < δ. Then

μd–
(ρn) + μd–
(ρn) > μd–Bd–(ρn) ()

due to () and (). Moreover, since x, y ∈ l(r,β), we receive that


(ρn),
(ρn) ⊂ �d–(r) ∩ Bd(β ,ρn) ()

and

μd–(�d–(r) ∩ Bd(β ,ρn)
)

= μd–(Bd–(ρn)
)

. ()

Set 
 = 
(ρn) ∩ 
(ρn). Then, due to (), () and (), μd–
 > . But each line l(r,β),
β ∈ 
, contains a point from W due to Condition  of Theorem  and the definitions of
the sets 
(ρn) and 
(ρn); this contradicts assumption v(W , r) =  of the lemma.

Lemma  Assume that the conditions of Theorem  hold. Let R ⊂ P
d– be such that

v(W , r) =  for all r ∈ R. If R contains d lines that are not contained in any d –-dimensional
hyperplane, then μd(F) = .

Due to () it is enough to prove that F̃ = ∅. Let r, . . . , rd be the lines from the state-
ment of the lemma, and let ρ, . . . ,ρd be unit vectors parallel to these lines. Set P :=
{∑d

k= tkρk : tk ∈ (–, ), k = , . . . , d}, then P is an open in R
d set.

Consider arbitrary x ∈ int Bd . Choose ε >  such that x + εP ⊂ Bd . Then, for all points
y from the segment θx, Py := y + εP ⊂ Bd .

⋃

y∈θx Py is an open cover of a compact set θx,
hence it contains a finite subcover P, P, . . . , Pm, m ∈N. From Lemma  it follows that for
each s = , . . . , m either Ps ⊂ F̃ , or

Ps ∩ F̃ = ∅. ()

Since θ /∈ F̃ , we obtain that () holds for each s = , . . . , m and hence x /∈ F̃ .

5.4 Proof of Theorem 1
If v(W , r) ≥  for almost all r ∈ P

d–, then vp(W ) ≥  and inequality () holds. It is strict
because Condition  of Theorem  holds. If there is a set R ⊂ P

d– of positive measure such
that v(W , r) =  for all r ∈ R, then μdF =  due to Lemma , and inequality () holds.

Assume that there exists R ⊂ P
d–, μR > , such that v(W , r) =  for all r ∈ R and

v(W , r) ≥  for almost all r ∈ P
d– \ R. Then

vp(W ) ≥  –
μR

μSd– . ()
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Really, if p = ∞, then v∞(W ) ≥  in the case μR < μPd– and v∞(W ) =  in the case μR =
μPd– = μSd–. In both cases () holds. In the case p ∈ [,∞)

vp(W ) ≥
(


μSd–

(

μR + p · (μSd– – μR
))

) 
p

≥  –
μR

μSd–

due to Lemma .
Conditions  and  of the theorem imply that there exists ε >  such that Bd(ε) ∩ W = ∅

and Bd(ε) ∩ F = ∅. Set � :=
⋃

r∈R(r ∩ Bd). Below we prove that

μd(� ∩ F) <
μd�


. ()

In order to prove (), it is enough to show that

μd(� ∩ F̃) <
μd�


()

due to (). Consider arbitrary r ∈ R. Then all points of the intersection r ∩ F̃ are from one
side of r∩Bd(ε). This fact can be proved using arguments similar to the proof of Lemma .
Denote by χ the characteristic function of the set � ∩ F̃ . Then χ (x) =  for all |x| < ε and
χ (x) + χ (–x) ≤  for all x ∈ �. This implies ().

Finally, having (), we can write

μdF ≤ μd(F ∩ �) + μd(Bd \ �
)

< μdBd –


μd�

= μdBd –



· μdBd

μSd– μR

=
μdBd



(

 –
μR

μSd–

)

.

The latter together with () proves ().
The same example as in Theorem  shows that inequality () is sharp.
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