31 research outputs found

    Monogenic diabetes in children and young adults: Challenges for researcher, clinician and patient

    Get PDF
    Monogenic diabetes results from one or more mutations in a single gene which might hence be rare but has great impact leading to diabetes at a very young age. It has resulted in great challenges for researchers elucidating the aetiology of diabetes and related features in other organ systems, for clinicians specifying a diagnosis that leads to improved genetic counselling, predicting of clinical course and changes in treatment, and for patients to altered treatment that has lead to coming off insulin and injections with no alternative (Glucokinase mutations), insulin injections being replaced by tablets (e.g. low dose in HNFα or high dose in potassium channel defects -Kir6.2 and SUR1) or with tablets in addition to insulin (e.g. metformin in insulin resistant syndromes). Genetic testing requires guidance to test for what gene especially given limited resources. Monogenic diabetes should be considered in any diabetic patient who has features inconsistent with their current diagnosis (unspecified neonatal diabetes, type 1 or type 2 diabetes) and clinical features of a specific subtype of monogenic diabetes (neonatal diabetes, familial diabetes, mild hyperglycaemia, syndromes). Guidance is given by clinical and physiological features in patient and family and the likelihood of the proposed mutation altering clinical care. In this article, I aimed to provide insight in the genes and mutations involved in insulin synthesis, secretion, and resistance, and to provide guidance for genetic testing by showing the clinical and physiological features and tests for each specified diagnosis as well as the opportunities for treatment

    Impact of food processing and detoxification treatments on mycotoxin contamination

    Get PDF

    Microfluidics: reframing biological enquiry

    Full text link
    The underlying physical properties of microfluidic tools have led to new biological insights through the development of microsystems that can manipulate, mimic and measure biology at a resolution that has not been possible with macroscale tools. Microsystems readily handle sub-microlitre volumes, precisely route predictable laminar fluid flows and match both perturbations and measurements to the length scales and timescales of biological systems. The advent of fabrication techniques that do not require highly specialized engineering facilities is fuelling the broad dissemination of microfluidic systems and their adaptation to specific biological questions. We describe how our understanding of molecular and cell biology is being and will continue to be advanced by precision microfluidic approaches and posit that microfluidic tools - in conjunction with advanced imaging, bioinformatics and molecular biology approaches - will transform biology into a precision science

    Elucidation of spheroid formation with and without the extrusion step

    No full text
    Spheroid formation mechanisms were investigated using extrusion-spheronization (ES) and rotary processing (RP). Using ES (cross-hatch), ES (teardrop), and RP (teardrop), spheroids with similar mass median diameter (MMD) and span were produced using equivalent formulation and spheronization conditions. During spheronization, the teardrop-studded rotating frictional surface, with increased peripheral tip speed and duration, produced spheroids of equivalent MMD and span to those produced by the cross-hatch rotating frictional plate surface. The roundness of these spheroids was also similar. RP required less water to produce spheroids of MMD similar to that of spheroids produced by ES. However, these RP spheroids were less spherical. Image analysis of 625 spheroids per batch indicated that the size distribution of RP spheroids had significantly greater SD, positive skewness, and kurtosis. Morphological examination of time-sampled spheroids produced by ES indicated that spheroid formation occurred predominatly by attrition and layering, while RP spheroids were formed by nucleation, agglomeration, layering, and coalescence. RP produced spheroids with higher crushing strength than that of ES-produced spheroids. The amount of moisture lost during spheronization for spheroids produced by ES had minimal influence on their eventual size. Differences in process and formulation parameters, in addition to size distribution and observed morphological changes, enabled a greater understanding of spheroid formation and methods to optimize spheroid production
    corecore