349 research outputs found
Pharmacological treatment of painful HIVassociated sensory neuropathy
Background. HIV-associated sensory neuropathy (HIV-SN) is a common and frequently painful complication of HIV infection and its treatment. However, few data exist describing the frequency, type and dosage of pain medications patients are receiving in the clinic setting to manage the painful symptoms of HIV-SN.Objective. To report on analgesic prescription for painful HIV-SN and factors influencing that prescription in adults on combination antiretroviral therapy.Methods. Using validated case ascertainment criteria to identify patients with painful HIV-SN, we recruited 130 HIV-positive patients with painful HIV-SN at Chris Hani Baragwanath Hospital, Johannesburg, South Africa. Demographic and clinical data (including current analgesic use) were collected on direct questioning of the patients and review of the medical files.Results. We found significant associations, of moderate effect size, between higher pain intensity and lower CD4 T-cell counts with prescription of analgesic therapy. Factors previously identified as predicting analgesic treatment in HIV-positive individuals (age, gender, level of education) were not associated with analgesic use here. Consistent with national guidelines, amitriptyline was the most commonly used agent, either alone or in combination therapy. Importantly, we also found that despite the relatively high analgesic treatment rate in this setting, the majority of patients described their current level of HIV-SN pain as moderate or severe.Conclusion. Our findings highlight the urgent need for both better analgesic options for HIV-SN pain treatment and ongoing training and support of clinicians managing this common and debilitating condition
New insights into protein-protein interaction data lead to increased estimates of the S. cerevisiae interactome size
<p>Abstract</p> <p>Background</p> <p>As protein interactions mediate most cellular mechanisms, protein-protein interaction networks are essential in the study of cellular processes. Consequently, several large-scale interactome mapping projects have been undertaken, and protein-protein interactions are being distilled into databases through literature curation; yet protein-protein interaction data are still far from comprehensive, even in the model organism <it>Saccharomyces cerevisiae</it>. Estimating the interactome size is important for evaluating the completeness of current datasets, in order to measure the remaining efforts that are required.</p> <p>Results</p> <p>We examined the yeast interactome from a new perspective, by taking into account how thoroughly proteins have been studied. We discovered that the set of literature-curated protein-protein interactions is qualitatively different when restricted to proteins that have received extensive attention from the scientific community. In particular, these interactions are less often supported by yeast two-hybrid, and more often by more complex experiments such as biochemical activity assays. Our analysis showed that high-throughput and literature-curated interactome datasets are more correlated than commonly assumed, but that this bias can be corrected for by focusing on well-studied proteins. We thus propose a simple and reliable method to estimate the size of an interactome, combining literature-curated data involving well-studied proteins with high-throughput data. It yields an estimate of at least 37, 600 direct physical protein-protein interactions in <it>S. cerevisiae</it>.</p> <p>Conclusions</p> <p>Our method leads to higher and more accurate estimates of the interactome size, as it accounts for interactions that are genuine yet difficult to detect with commonly-used experimental assays. This shows that we are even further from completing the yeast interactome map than previously expected.</p
Release of Intracellular Calcium Stores Facilitates Coxsackievirus Entry into Polarized Endothelial Cells
Group B coxsackieviruses (CVB) are associated with viral-induced heart disease and are among the leading causes of aseptic meningitis worldwide. Here we show that CVB entry into polarized brain microvasculature and aortic endothelial cells triggers a depletion of intracellular calcium stores initiated through viral attachment to the apical attachment factor decay-accelerating factor. Calcium release was dependent upon a signaling cascade that required the activity of the Src family of tyrosine kinases, phospholipase C, and the inositol 1,4,5-trisphosphate receptor isoform 3. CVB-mediated calcium release was required for the activation of calpain-2, a calcium-dependent cysteine protease, which controlled the vesicular trafficking of internalized CVB particles. These data point to a specific role for calcium signaling in CVB entry into polarized endothelial monolayers and highlight the unique signaling mechanisms used by these viruses to cross endothelial barriers
Generation of stable Drosophila cell lines using multicistronic vectors
Insect cell culture is becoming increasingly important for applications including recombinant protein production and cell-based screening with chemical or RNAi libraries. While stable mammalian cell lines expressing a protein of interest can be efficiently prepared using IRES-based vectors or viral-based approaches, options for stable insect cell lines are more limited. Here, we describe pAc5-STABLEs, new vectors for use in Drosophila cell culture to facilitate stable transformation. We show that viral-derived 2A-like (or "CHYSEL") peptides function in Drosophila cells and can mediate the multicistronic expression of two or three proteins of interest under control of the Actin5C constitutive promoter. The current vectors allow mCherry and/or GFP fusions to be generated for positive selection by G418 resistance in cells and should serve as a flexible platform for future applications
Effects of Electrical and Structural Remodeling on Atrial Fibrillation Maintenance: A Simulation Study
Atrial fibrillation, a common cardiac arrhythmia, often progresses unfavourably: in patients with long-term atrial fibrillation, fibrillatory episodes are typically of increased duration and frequency of occurrence relative to healthy controls. This is due to electrical, structural, and contractile remodeling processes. We investigated mechanisms of how electrical and structural remodeling contribute to perpetuation of simulated atrial fibrillation, using a mathematical model of the human atrial action potential incorporated into an anatomically realistic three-dimensional structural model of the human atria. Electrical and structural remodeling both shortened the atrial wavelength - electrical remodeling primarily through a decrease in action potential duration, while structural remodeling primarily slowed conduction. The decrease in wavelength correlates with an increase in the average duration of atrial fibrillation/flutter episodes. The dependence of reentry duration on wavelength was the same for electrical vs. structural remodeling. However, the dynamics during atrial reentry varied between electrical, structural, and combined electrical and structural remodeling in several ways, including: (i) with structural remodeling there were more occurrences of fragmented wavefronts and hence more filaments than during electrical remodeling; (ii) dominant waves anchored around different anatomical obstacles in electrical vs. structural remodeling; (iii) dominant waves were often not anchored in combined electrical and structural remodeling. We conclude that, in simulated atrial fibrillation, the wavelength dependence of reentry duration is similar for electrical and structural remodeling, despite major differences in overall dynamics, including maximal number of filaments, wave fragmentation, restitution properties, and whether dominant waves are anchored to anatomical obstacles or spiralling freely
Plant communities as a tool in temporary ponds conservation in SW Portugal
Pond conservationTemporary ponds are seasonal wetlands
annually subjected to extreme and unstable ecological
conditions, neither truly aquatic nor truly terrestrial.
This habitat and its flora have been poorly
studied and documented because of the ephemeral
character of the flora, the changeable annual weather
that has a great effect on the small, herbaceous taxa
and the declining abundance of temporary ponds. The
objectives of this study are: (a) to define plant
community diversity in terms of floristic composition of ephemeral wetlands in SW Portugal, (b) to identify
temporary pond types according to their vegetation
composition and (c) to identify those ponds that
configure the European community priority habitat
(3170* – Mediterranean temporary ponds).
Vegetation sampling was conducted in 29 ponds,
identifying 168 species grouped among 15 plant
communities. Soil texture, pH, organic C and N
content were measured, but only N and percent of
clay appear to be related with the distribution of each
community type. The results showed that ephemeral
wetlands could be classified into four type: vernal
pools, marshlands, deep ponds and disturbed wetlands.
Vernal pools correspond to the Mediterranean
temporary ponds (3170*), protected as priority habitat
under the EU Habitats Directive. Submersed
Isoetes species (Isoetes setaceum and Isoetes velatum)
represents, together with Eryngium corniculatum,
the indicator species for vernal pools. We
identify also indicator plant communities of this
priority habitat, namely I. setaceum and E. corniculatum–
Baldellia ranunculoides plant communities. In
this region, the conservation of temporary ponds has
so far been compatible with traditional agricultural
activities, but today these ponds are endangered by
the intensification of agriculture and the loss of
traditional land use practices and by the development
of touris
High-Precision, In Vitro Validation of the Sequestration Mechanism for Generating Ultrasensitive Dose-Response Curves in Regulatory Networks
Our ability to recreate complex biochemical mechanisms in designed, artificial systems provides a stringent test of our understanding of these mechanisms and opens the door to their exploitation in artificial biotechnologies. Motivated by this philosophy, here we have recapitulated in vitro the “target sequestration” mechanism used by nature to improve the sensitivity (the steepness of the input/output curve) of many regulatory cascades. Specifically, we have employed molecular beacons, a commonly employed optical DNA sensor, to recreate the sequestration mechanism and performed an exhaustive, quantitative study of its key determinants (e.g., the relative concentrations and affinities of probe and depletant). We show that, using sequestration, we can narrow the pseudo-linear range of a traditional molecular beacon from 81-fold (i.e., the transition from 10% to 90% target occupancy spans an 81-fold change in target concentration) to just 1.5-fold. This narrowing of the dynamic range improves the sensitivity of molecular beacons to that equivalent of an oligomeric, allosteric receptor with a Hill coefficient greater than 9. Following this we have adapted the sequestration mechanism to steepen the binding-site occupancy curve of a common transcription factor by an order of magnitude over the sensitivity observed in the absence of sequestration. Given the success with which the sequestration mechanism has been employed by nature, we believe that this strategy could dramatically improve the performance of synthetic biological systems and artificial biosensors
Glycosylation Focuses Sequence Variation in the Influenza A Virus H1 Hemagglutinin Globular Domain
Antigenic drift in the influenza A virus hemagglutinin (HA) is responsible for seasonal reformulation of influenza vaccines. Here, we address an important and largely overlooked issue in antigenic drift: how does the number and location of glycosylation sites affect HA evolution in man? We analyzed the glycosylation status of all full-length H1 subtype HA sequences available in the NCBI influenza database. We devised the “flow index” (FI), a simple algorithm that calculates the tendency for viruses to gain or lose consensus glycosylation sites. The FI predicts the predominance of glycosylation states among existing strains. Our analyses show that while the number of glycosylation sites in the HA globular domain does not influence the overall magnitude of variation in defined antigenic regions, variation focuses on those regions unshielded by glycosylation. This supports the conclusion that glycosylation generally shields HA from antibody-mediated neutralization, and implies that fitness costs in accommodating oligosaccharides limit virus escape via HA hyperglycosylation
- …