11 research outputs found

    Simple Motion Evasion Differential Game of Many Pursuers and Evaders with Integral Constraints

    No full text
    We study a simple motion evasion differential game of many pursuers and evaders. Control functions of players are subjected to integral constraints. If the state of at least one evader does not coincide with that of any pursuer forever, then evasion is said to be possible in the game. The aim of the group of evaders is to construct their strategies so that evasion can be possible in the game and the aim of the group of pursuers is opposite. The problem is to find a sufficient condition of evasion. If the total energy of pursuers is less than or equal to that of evaders, then it is proved that evasion is possible, and moreover, evasion strategies are constructed explicitly

    Diet and diversification in the evolution of coral reef fishes

    Get PDF
    The disparity in species richness among evolutionary lineages is one of the oldest and most intriguing issues in evolutionary biology. Although geographical factors have been traditionally thought to promote speciation, recent studies have underscored the importance of ecological interactions as one of the main drivers of diversification. Here, we test if differences in species richness of closely related lineages match predictions based on the concept of density-dependent diversification. As radiation progresses, ecological niche-space would become increasingly saturated, resulting in fewer opportunities for speciation. To assess this hypothesis, we tested whether reef fish niche shifts toward usage of low-quality food resources (i.e. relatively low energy/protein per unit mass), such as algae, detritus, sponges and corals are accompanied by rapid net diversification. Using available molecular information, we reconstructed phylogenies of four major reef fish clades (Acanthuroidei, Chaetodontidae, Labridae and Pomacentridae) to estimate the timing of radiations of their subclades. We found that the evolution of species-rich clades was associated with a switch to low quality food in three of the four clades analyzed, which is consistent with a density-dependent model of diversification. We suggest that ecological opportunity may play an important role in understanding the diversification of reef-fish lineages

    A synoptic review of the Eocene (Ypresian) cartilaginous fishes (Chondrichthyes: Holocephali, Elasmobranchii) of the Bolca Konservat-Lagerstätte, Italy

    No full text

    Paleogenomics of animal domestication

    No full text
    Starting with dogs, over 15,000 years ago, the domestication of animals has been central in the development of modern societies. Because of its importance for a range of disciplines – including archaeology, biology and the humanities – domestication has been studied extensively. This chapter reviews how the field of paleogenomics has revolutionised, and will continue to revolutionise, our understanding of animal domestication. We discuss how the recovery of ancient DNA from archaeological remains is allowing researchers to overcome inherent shortcomings arising from the analysis of modern DNA alone. In particular, we show how DNA, extracted from ancient substrates, has proven to be a crucial source of information to reconstruct the geographic and temporal origin of domestic species. We also discuss how ancient DNA is being used by geneticists and archaeologists to directly observe evolutionary changes linked to artificial and natural selection to generate a richer understanding of this fascinating process

    ATLAS: Technical proposal for a general-purpose p p experiment at the Large Hadron Collider at CERN

    No full text

    ATLAS calorimeter performance

    No full text
    corecore