2,256 research outputs found
Two experiments for the price of one? -- The role of the second oscillation maximum in long baseline neutrino experiments
We investigate the quantitative impact that data from the second oscillation
maximum has on the performance of wide band beam neutrino oscillation
experiments. We present results for the physics sensitivities to standard three
flavor oscillation, as well as results for the sensitivity to non-standard
interactions. The quantitative study is performed using an experimental setup
similar to the Fermilab to DUSEL Long Baseline Neutrino Experiment (LBNE). We
find that, with the single exception of sensitivity to the mass hierarchy, the
second maximum plays only a marginal role due to the experimental difficulties
to obtain a statistically significant and sufficiently background-free event
sample at low energies. This conclusion is valid for both water Cherenkov and
liquid argon detectors. Moreover, we confirm that non-standard neutrino
interactions are very hard to distinguish experimentally from standard
three-flavor effects and can lead to a considerable loss of sensitivity to
\theta_{13}, the mass hierarchy and CP violation.Comment: RevTex 4.1, 23 pages, 10 figures; v2: Typos corrected, very minor
clarifications; matches published version; v3: Fixed a typo in the first
equation in sec. III
Sperm death and dumping in Drosophila
Mating with more than one male is the norm for females of many species. In addition to generating competition between the ejaculates of different males, multiple mating may allow females to bias sperm use. In Drosophila melanogaster, the last male to inseminate a female sires approximately 80% of subsequent progeny. Both sperm displacement, where resident sperm are removed from storage by the incoming ejaculate of the copulating male, and sperm incapacitation, where incoming seminal fluids supposedly interfere with resident sperm, have been implicated in this pattern of sperm use. But the idea of incapacitation is problematic because there are no known mechanisms by which an individual could damage rival sperm and not their own. Females also influence the process of sperm use, but exactly how is unclear. Here we show that seminal fluids do not kill rival sperm and that any 'incapacitation' is probably due to sperm ageing during sperm storage. We also show that females release stored sperm from the reproductive tract (sperm dumping) after copulation with a second male and that this requires neither incoming sperm nor seminal fluids. Instead, males may cause stored sperm to be dumped or females may differentially eject sperm from the previous mating
Pityriasis rubra pilaris presenting with an abnormal autoimmune profile: two case reports
<p>Abstract</p> <p>Introduction</p> <p>Pityriasis rubra pilaris is an uncommon inflammatory and hyperproliferative dermatosis of juvenile or adult onset. The etiology of the disease is still unknown.</p> <p>Case presentation</p> <p>We present the cases of two Caucasian men aged 53 and 48 who presented with pityriasis rubra pillaris type 1; both patients also exhibited an abnormal immunological profile.</p> <p>Conclusion</p> <p>Pityriasis rubra pillaris is currently classified as a keratinization disorder. The abnormal immunological profile reported in our patients along with the comorbidity of pityriasis rubra pilaris with autoimmune disorders reported in the literature poses the question of a possible pathogenetic role for the immune response in this disorder.</p
Flavor conversion of cosmic neutrinos from hidden jets
High energy cosmic neutrino fluxes can be produced inside relativistic jets
under the envelopes of collapsing stars. In the energy range E ~ (0.3 - 1e5)
GeV, flavor conversion of these neutrinos is modified by various matter effects
inside the star and the Earth. We present a comprehensive (both analytic and
numerical) description of the flavor conversion of these neutrinos which
includes: (i) oscillations inside jets, (ii) flavor-to-mass state transitions
in an envelope, (iii) loss of coherence on the way to observer, and (iv)
oscillations of the mass states inside the Earth. We show that conversion has
several new features which are not realized in other objects, in particular
interference effects ("L- and H- wiggles") induced by the adiabaticity
violation. The neutrino-neutrino scattering inside jet and inelastic neutrino
interactions in the envelope may produce some additional features at E > 1e4
GeV. We study dependence of the probabilities and flavor ratios in the
matter-affected region on angles theta13 and theta23, on the CP-phase delta, as
well as on the initial flavor content and density profile of the star. We show
that measurements of the energy dependence of the flavor ratios will, in
principle, allow to determine independently the neutrino and astrophysical
parameters.Comment: 56 pages, 19 figures. Minor changes. Accepted by JHEP
Recommended from our members
Results of the MAJORANA DEMONSTRATOR's Search for Double-Beta Decay of 76Ge to Excited States of 76Se
The MAJORANA DEMONSTRATOR is searching for double-beta decay of 76Ge to excited states (E.S.) in 76Se using a modular array of high purity Germanium detectors. 76Ge can decay into three E.S.s of 76Se. The E.S. decays have a clear event signature consisting of a ÎČÎČ-decay with the prompt emission of one or two Îł-rays, resulting in with high probability in a multi-site event. The granularity of the DEMONSTRATOR detector array enables powerful discrimination of this event signature from backgrounds. Using 21.3 kg-y of isotopic exposure, the DEMONSTRATOR has set world leading limits for each E.S. decay, with 90% CL lower half-life limits in the range of (0.56 2.1) â
1024 y. In particular, for the 2v transition to the first 0+ E.S. of 76Se, a lower half-life limit of 0.68 â
1024 at 90% CL was achieved
Modeling Stochasticity and Variability in Gene Regulatory Networks
Modeling stochasticity in gene regulatory networks is an important and
complex problem in molecular systems biology. To elucidate intrinsic noise,
several modeling strategies such as the Gillespie algorithm have been used
successfully. This paper contributes an approach as an alternative to these
classical settings. Within the discrete paradigm, where genes, proteins, and
other molecular components of gene regulatory networks are modeled as discrete
variables and are assigned as logical rules describing their regulation through
interactions with other components. Stochasticity is modeled at the biological
function level under the assumption that even if the expression levels of the
input nodes of an update rule guarantee activation or degradation there is a
probability that the process will not occur due to stochastic effects. This
approach allows a finer analysis of discrete models and provides a natural
setup for cell population simulations to study cell-to-cell variability. We
applied our methods to two of the most studied regulatory networks, the outcome
of lambda phage infection of bacteria and the p53-mdm2 complex.Comment: 23 pages, 8 figure
A fourth generation, anomalous like-sign dimuon charge asymmetry and the LHC
A fourth chiral generation, with in the range GeV and a moderate value of the CP-violating phase can explain the
anomalous like-sign dimuon charge asymmetry observed recently by the D0
collaboration. The required parameters are found to be consistent with
constraints from other and decays. The presence of such quarks, apart
from being detectable in the early stages of the LHC, would also have important
consequences in the electroweak symmetry breaking sector.Comment: 18 pages, 9 figures, Figure 1 is modified, more discussions are added
in section 2. new references adde
Strip Center Qhatu Plaza
El presente documento refiere al desarrollo detallado de todas las etapas involucradas en la ejecuci?n de nuestro proyecto Qhatu Plaza que como parte de nuestra cartera de proyectos de construcci?n diferenciamos a modo de Infraestructura innovadora, un modelo distinto de centros comerciales estandarizados en la zona de influencia de Ate Vitarte ? Lima
Recommended from our members
ADC Nonlinearity Correction for the Majorana Demonstrator
Imperfections in analog-to-digital conversion (ADC) cannot be ignored when signal digitization requirements demand both wide dynamic range and high resolution, as is the case for the Majorana Demonstrator 76Ge neutrinoless double-beta decay search. Enabling the experiment's high-resolution spectral analysis and efficient pulse shape discrimination required careful measurement and correction of ADC nonlinearities. A simple measurement protocol was developed that did not require sophisticated equipment or lengthy data-taking campaigns. A slope-dependent hysteresis was observed and characterized. A correction applied to digitized waveforms prior to signal processing reduced the differential and integral nonlinearities by an order of magnitude, eliminating these as dominant contributions to the systematic energy uncertainty at the double-beta decay Q value
- âŠ