9 research outputs found

    A new era for understanding amyloid structures and disease

    Get PDF
    The aggregation of proteins into amyloid fibrils and their deposition into plaques and intracellular inclusions is the hallmark of amyloid disease. The accumulation and deposition of amyloid fibrils, collectively known as amyloidosis, is associated with many pathological conditions that can be associated with ageing, such as Alzheimer disease, Parkinson disease, type II diabetes and dialysis-related amyloidosis. However, elucidation of the atomic structure of amyloid fibrils formed from their intact protein precursors and how fibril formation relates to disease has remained elusive. Recent advances in structural biology techniques, including cryo-electron microscopy and solid-state NMR spectroscopy, have finally broken this impasse. The first near-atomic-resolution structures of amyloid fibrils formed in vitro, seeded from plaque material and analysed directly ex vivo are now available. The results reveal cross-β structures that are far more intricate than anticipated. Here, we describe these structures, highlighting their similarities and differences, and the basis for their toxicity. We discuss how amyloid structure may affect the ability of fibrils to spread to different sites in the cell and between organisms in a prion-like manner, along with their roles in disease. These molecular insights will aid in understanding the development and spread of amyloid diseases and are inspiring new strategies for therapeutic intervention

    The role of αB-crystallin in skeletal and cardiac muscle tissues

    No full text

    The Therapeutic Potential of I-Domain Integrins

    No full text

    Clinical presentation, aetiology and outcome of infective endocarditis. Results of the ESC-EORP EURO-ENDO (European infective endocarditis) registry: a prospective cohort study

    No full text
    The EURO-ENDO registry aimed to study the management and outcomes of patients with infective endocarditis (IE). AIMS: The EURO-ENDO registry aimed to study the management and outcomes of patients with infective endocarditis (IE). METHODS AND RESULTS: Prospective cohort of 3116 adult patients (2470 from Europe, 646 from non-ESC countries), admitted to 156 hospitals in 40 countries between January 2016 and March 2018 with a diagnosis of IE based on ESC 2015 diagnostic criteria. Clinical, biological, microbiological, and imaging [echocardiography, computed tomography (CT) scan, 18F-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT)] data were collected. Infective endocarditis was native (NVE) in 1764 (56.6%) patients, prosthetic (PVIE) in 939 (30.1%), and device-related (CDRIE) in 308 (9.9%). Infective endocarditis was community-acquired in 2046 (65.66%) patients. Microorganisms involved were staphylococci in 1085 (44.1%) patients, oral streptococci in 304 (12.3%), enterococci in 390 (15.8%), and Streptococcus gallolyticus in 162 (6.6%). 18F-fluorodeoxyglucose positron emission tomography/computed tomography was performed in 518 (16.6%) patients and presented with cardiac uptake (major criterion) in 222 (42.9%) patients, with a better sensitivity in PVIE (66.8%) than in NVE (28.0%) and CDRIE (16.3%). Embolic events occurred in 20.6% of patients, and were significantly associated with tricuspid or pulmonary IE, presence of a vegetation and Staphylococcus aureus IE. According to ESC guidelines, cardiac surgery was indicated in 2160 (69.3%) patients, but finally performed in only 1596 (73.9%) of them. In-hospital death occurred in 532 (17.1%) patients and was more frequent in PVIE. Independent predictors of mortality were Charlson index, creatinine > 2\u2009mg/dL, congestive heart failure, vegetation length > 10 mm, cerebral complications, abscess, and failure to undertake surgery when indicated. CONCLUSION: Infective endocarditis is still a life-threatening disease with frequent lethal outcome despite profound changes in its clinical, microbiological, imaging, and therapeutic profiles

    Biomimetic peptide self-assembly for functional materials

    No full text
    corecore