532 research outputs found
Systematic study of the effect of short range correlations on the form factors and densities of s-p and s-d shell nuclei
Analytical expressions of the one- and two-body terms in the cluster
expansion of the charge form factors and densities of the s-p and s-d shell
nuclei with N=Z are derived. They depend on the harmonic oscillator parameter b
and the parameter which originates from the Jastrow correlation
function. These expressions are used for the systematic study of the effect of
short range correlations on the form factors and densities and of the mass
dependence of the parameters b and . These parameters have been
determined by fit to the experimental charge form factors. The inclusion of the
correlations reproduces the experimental charge form factors at the high
momentum transfers (). It is found that while the parameter
is almost constant for the closed shell nuclei, He, O and
Ca, its values are larger (less correlated systems) for the open shell
nuclei, indicating a shell effect in the closed shell nuclei.Comment: Latex, 21 pages, 6 figures, 1 tabl
Application of information entropy to nuclei
Shannon's information entropies in position- and momentum- space and their
sum are calculated for various - and - shell nuclei using a
correlated one-body density matrix depending on the harmonic oscillator size
and the short range correlation parameter which originates from a
Jastrow correlation function. It is found that the information entropy sum for
a nucleus depends only on the correlation parameter through the simple
relation , where , and
depend on the mass number . A similar approximate expression
is also valid for the root mean square radius of the nucleus as function of
leading to an approximate expression which connects with the root mean
square radius. Finally, we propose a method to determine the correlation
parameter from the above property of as well as the linear dependence of
on the logarithm of the number of nucleons.Comment: 10 pages, 10 EPS figures, RevTeX, Phys.Rev.C accepted for publicatio
Family Unification in Five and Six Dimensions
In family unification models, all three families of quarks and leptons are
grouped together into an irreducible representation of a simple gauge group,
thus unifying the Standard Model gauge symmetries and a gauged family symmetry.
Large orthogonal groups, and the exceptional groups and have been
much studied for family unification. The main theoretical difficulty of family
unification is the existence of mirror families at the weak scale. It is shown
here that family unification without mirror families can be realized in simple
five-dimensional and six-dimensional orbifold models similar to those recently
proposed for SU(5) and SO(10) grand unification. It is noted that a family
unification group that survived to near the weak scale and whose coupling
extrapolated to high scales unified with those of the Standard model would be
evidence accessible in principle at low energy of the existence of small
(Planckian or GUT-scale) extra dimensions.Comment: 13 pages, 2 figures, minor corrections, references adde
Measurement of the Proton and Deuteron Spin Structure Functions g2 and Asymmetry A2
We have measured the spin structure functions g2p and g2d and the virtual
photon asymmetries A2p and A2d over the kinematic range 0.02 < x < 0.8 and 1.0
< Q^2 < 30(GeV/c)^2 by scattering 38.8 GeV longitudinally polarized electrons
from transversely polarized NH3 and 6LiD targets.The absolute value of A2 is
significantly smaller than the sqrt{R} positivity limit over the measured
range, while g2 is consistent with the twist-2 Wandzura-Wilczek calculation. We
obtain results for the twist-3 reduced matrix elements d2p, d2d and d2n. The
Burkhardt-Cottingham sum rule integral - int(g2(x)dx) is reported for the range
0.02 < x < 0.8.Comment: 12 pages, 4 figures, 1 tabl
A-dependence of nuclear transparency in quasielastic A(e,e'p) at high Q^2
The A-dependence of the quasielastic A(e,e'p) reaction has been studied at
SLAC with H-2, C, Fe, and Au nuclei at momentum transfers Q^2 = 1, 3, 5, and
6.8 (GeV/c)^2. We extract the nuclear transparency T(A,Q^2), a measure of the
average probability that the struck proton escapes from the nucleus A without
interaction. Several calculations predict a significant increase in T with
momentum transfer, a phenomenon known as Color Transparency. No significant
rise within errors is seen for any of the nuclei studied.Comment: 5 pages incl. 2 figures, Caltech preprint OAP-73
A SLUGGS and Gemini/GMOS combined study of the elliptical galaxy M60: wide-field photometry and kinematics of the globular cluster system
We present new wide-field photometry and spectroscopy of the globular clusters (GCs) around NGC 4649 (M60), the third brightest galaxy in the Virgo cluster. Imaging of NGC 4649 was assembled from a recently obtained Hubble Space Telescope/Advanced Camera for Surveys mosaic, and new Subaru/Suprime-Cam and archival Canada–France–Hawaii Telescope/MegaCam data. About 1200 sources were followed up spectroscopically using combined observations from three multi-object spectrographs: Keck/Deep Imaging Multi-Object Spectrograph, Gemini/Gemini Multi-Object Spectrograph and Multiple Mirror Telescope/Hectospec. We confirm 431 unique GCs belonging to NGC 4649, a factor of 3.5 larger than previous data sets and with a factor of 3 improvement in velocity precision. We confirm significant GC colour bimodality and find that the red GCs are more centrally concentrated, while the blue GCs are more spatially extended. We infer negative GC colour gradients in the innermost 20 kpc and flat gradients out to large radii. Rotation is detected along the galaxy major axis for all tracers: blue GCs, red GCs, galaxy stars and planetary nebulae. We compare the observed properties of NGC 4649 with galaxy formation models. We find that formation via a major merger between two gas-poor galaxies, followed by satellite accretion, can consistently reproduce the observations of NGC 4649 at different radii. We find no strong evidence to support an interaction between NGC 4649 and the neighbouring spiral galaxy NGC 4647. We identify interesting GC kinematic features in our data, such as counter-rotating subgroups and bumpy kinematic profiles, which encode more clues about the formation history of NGC 4649
Precision Measurement of the Proton and Deuteron Spin Structure Functions g2 and Asymmetries A2
We have measured the spin structure functions g2p and g2d and the virtual
photon asymmetries A2p and A2d over the kinematic range 0.02 < x < 0.8 and 0.7
< Q^2 < 20 GeV^2 by scattering 29.1 and 32.3 GeV longitudinally polarized
electrons from transversely polarized NH3 and 6LiD targets. Our measured g2
approximately follows the twist-2 Wandzura-Wilczek calculation. The twist-3
reduced matrix elements d2p and d2n are less than two standard deviations from
zero. The data are inconsistent with the Burkhardt-Cottingham sum rule if there
is no pathological behavior as x->0. The Efremov-Leader-Teryaev integral is
consistent with zero within our measured kinematic range. The absolute value of
A2 is significantly smaller than the sqrt[R(1+A1)/2] limit.Comment: 12 pages, 4 figures, 2 table
Critical exponents and equation of state of the three-dimensional Heisenberg universality class
We improve the theoretical estimates of the critical exponents for the
three-dimensional Heisenberg universality class. We find gamma=1.3960(9),
nu=0.7112(5), eta=0.0375(5), alpha=-0.1336(15), beta=0.3689(3), and
delta=4.783(3). We consider an improved lattice phi^4 Hamiltonian with
suppressed leading scaling corrections. Our results are obtained by combining
Monte Carlo simulations based on finite-size scaling methods and
high-temperature expansions. The critical exponents are computed from
high-temperature expansions specialized to the phi^4 improved model. By the
same technique we determine the coefficients of the small-magnetization
expansion of the equation of state. This expansion is extended analytically by
means of approximate parametric representations, obtaining the equation of
state in the whole critical region. We also determine a number of universal
amplitude ratios.Comment: 40 pages, final version. In publication in Phys. Rev.
Measurements of the -Dependence of the Proton and Neutron Spin Structure Functions g1p and g1n
The structure functions g1p and g1n have been measured over the range 0.014 <
x < 0.9 and 1 < Q2 < 40 GeV2 using deep-inelastic scattering of 48 GeV
longitudinally polarized electrons from polarized protons and deuterons. We
find that the Q2 dependence of g1p (g1n) at fixed x is very similar to that of
the spin-averaged structure function F1p (F1n). From a NLO QCD fit to all
available data we find at
Q2=5 GeV2, in agreement with the Bjorken sum rule prediction of 0.182 \pm
0.005.Comment: 17 pages, 3 figures. Submitted to Physics Letters
Sur les exposants de Lyapounov des applications meromorphes
Let f be a dominating meromorphic self-map of a compact Kahler manifold. We
give an inequality for the Lyapounov exponents of some ergodic measures of f
using the metric entropy and the dynamical degrees of f. We deduce the
hyperbolicity of some measures.Comment: 27 pages, paper in french, final version: to appear in Inventiones
Mat
- …