462 research outputs found

    Computer Simulation of Douglas-Fir Tree and Stand Growth

    Get PDF

    Sheep Behaviour, Needs, Housing and Care

    Get PDF
    Sheep (Ovis aries) are an attractive animal for scientific procedures; for medical, veterinary and fundamental  biological research. They are docile, rarely show aggression, have a (relatively) short flight distance and are  gregarious. In the UK, of 3 million animal scientific procedures in 2006, over 36,000 involved sheep. Small  as a proportion perhaps, but exceeded only by the number involving rats and mice, among mammals, and  chickens and fish (all species). And the numbers of sheep used in experimental procedures are increasing  (up 24% on the previous year). They live longer than mice and rats (up to 15 years potentially) so can be  used for longer term studies. They are smaller and more manageable than cows, yet have an analagous  digestive system. They are commonly used for testing for veterinary vaccines. They have a similar neural  axial structure to humans, so have been used for analagous studies, such as drug testing for treatment of  Huntington’s disease. They have traditionally been used in foetal physiological experiments, and in altering  their genetic component to produce compounds that may be harvested in their milk, such as insulin or  clotting agents for haemohpilia. Their use in fundamental genetic research has been well publicised. Other  advantages are that they are highly domesticated, and we have a substantial knowledge bank of work on  their behaviour. Nevertheless there remain specific welfare issues relating to the use of the sheep as an  experimental animal. This presentation considers the particular behaviour of the domestic sheep and relates  this to their housing, welfare, handling, and general care.

    Welfare of Large Animals In Scientific Research

    Get PDF
    For the purpose of this paper, large animal species are taken to be those animals that are commonly used  as farm livestock animals namely: cows, pigs, goats, sheep, horses, camelids and deer. The numbers of  procedures in the UK in 2006 involving such animals amounted to around 56,000 out of a total of around 3  million. It may be that human perception of these animals as livestock animals impairs our consideration of  their needs, compared to say those of common pet animals, dogs or cats. As the perception of their environment,  and the potential to suffer, of livestock animals is likely to be similar however, we should not neglect  their needs. The use of large animals in scientific procedures has advantages in some respects – the animals  are in the main domesticated, and are therefore comparatively docile and have been bred to cope with captivity.  Nevertheless they can display aggressive behaviour and are capable of causing significant injury, so an  understanding of their behaviour can reduce risks to staff caring for and working with these animals. This  presentation considers the behaviour of these animals, their needs, signs of discomfort and pain, and means  to ameliorate both their welfare and the safety of staff engaged in their use.

    Organic Haze as a Biosignature in Anoxic Earth-like Atmospheres

    Full text link
    Early Earth may have hosted a biologically-mediated global organic haze during the Archean eon (3.8-2.5 billion years ago). This haze would have significantly impacted multiple aspects of our planet, including its potential for habitability and its spectral appearance. Here, we model worlds with Archean-like levels of carbon dioxide orbiting the ancient sun and an M4V dwarf (GJ 876) and show that organic haze formation requires methane fluxes consistent with estimated Earth-like biological production rates. On planets with high fluxes of biogenic organic sulfur gases (CS2, OCS, CH3SH, and CH3SCH3), photochemistry involving these gases can drive haze formation at lower CH4/CO2 ratios than methane photochemistry alone. For a planet orbiting the sun, at 30x the modern organic sulfur gas flux, haze forms at a CH4/CO2 ratio 20% lower than at 1x the modern organic sulfur flux. For a planet orbiting the M4V star, the impact of organic sulfur gases is more pronounced: at 1x the modern Earth organic sulfur flux, a substantial haze forms at CH4/CO2 ~ 0.2, but at 30x the organic sulfur flux, the CH4/CO2 ratio needed to form haze decreases by a full order of magnitude. Detection of haze at an anomalously low CH4/CO2 ratio could suggest the influence of these biogenic sulfur gases, and therefore imply biological activity on an exoplanet. When these organic sulfur gases are not readily detectable in the spectrum of an Earth-like exoplanet, the thick organic haze they can help produce creates a very strong absorption feature at UV-blue wavelengths detectable in reflected light at a spectral resolution as low as 10. In direct imaging, constraining CH4 and CO2 concentrations will require higher spectral resolution, and R > 170 is needed to accurately resolve the structure of the CO2 feature at 1.57 {\mu}m, likely, the most accessible CO2 feature on an Archean-like exoplanet.Comment: accepted for publication in Astrobiolog

    Is the Pale Blue Dot unique? Optimized photometric bands for identifying Earth-like exoplanets

    Full text link
    The next generation of ground and space-based telescopes will image habitable planets around nearby stars. A growing literature describes how to characterize such planets with spectroscopy, but less consideration has been given to the usefulness of planet colors. Here, we investigate whether potentially Earth-like exoplanets could be identified using UV-visible-to-NIR wavelength broadband photometry (350-1000 nm). Specifically, we calculate optimal photometric bins for identifying an exo-Earth and distinguishing it from uninhabitable planets including both Solar System objects and model exoplanets. The color of some hypothetical exoplanets - particularly icy terrestrial worlds with thick atmospheres - is similar to Earth's because of Rayleigh scattering in the blue region of the spectrum. Nevertheless, subtle features in Earth's reflectance spectrum appear to be unique. In particular, Earth's reflectance spectrum has a 'U-shape' unlike all our hypothetical, uninhabitable planets. This shape is partly biogenic because O2-rich, oxidizing air is transparent to sunlight, allowing prominent Rayleigh scattering, while ozone absorbs visible light, creating the bottom of the 'U'. Whether such uniqueness has practical utility depends on observational noise. If observations are photon limited or dominated by astrophysical sources (zodiacal light or imperfect starlight suppression), then the use of broadband visible wavelength photometry to identify Earth twins has little practical advantage over obtaining detailed spectra. However, if observations are dominated by dark current then optimized photometry could greatly assist preliminary characterization. We also calculate the optimal photometric bins for identifying extrasolar Archean Earths, and find that the Archean Earth is more difficult to unambiguously identify than a modern Earth twin.Comment: 10 figures, 38 page

    Non-contact ultrasound characterization of paper substrates

    Get PDF
    Different kinds of paper varying in basis weight, thickness, etc. and finishing characteristics such as cast, gloss, matte were analyzed with and without deposited ink. A 1.7 MHz Ultran non-contact ultrasound focused transducer was operated in the pulse-echo mode to investigate the samples following a raster scan on a 1.5 cm by 1.5 cm area. Both sides of each sample were imaged under this protocol. A pre-designed pattern consisting of some text and a rectangular solid block was printed on the front side of the samples using a Xerox Nuvera120 laser printer and the imaging protocol repeated. C-scan images created from the envelope detected data provide a promising means to investigate and visually differentiate the mechanical properties of the samples as ink is deposited, as well as to differentiate front and back sides of each sample. The second normalized intensity moment and Signal to Noise Ratio (SNR) of the signal envelope are investigated to test their validity to discriminate between different kinds of paper as well as differences in scattering properties when ink is deposited

    An Ensemble of Bayesian Neural Networks for Exoplanetary Atmospheric Retrieval

    Get PDF
    Machine learning is now used in many areas of astrophysics, from detecting exoplanets in Kepler transit signals to removing telescope systematics. Recent work demonstrated the potential of using machine learning algorithms for atmospheric retrieval by implementing a random forest to perform retrievals in seconds that are consistent with the traditional, computationally-expensive nested-sampling retrieval method. We expand upon their approach by presenting a new machine learning model, \texttt{plan-net}, based on an ensemble of Bayesian neural networks that yields more accurate inferences than the random forest for the same data set of synthetic transmission spectra. We demonstrate that an ensemble provides greater accuracy and more robust uncertainties than a single model. In addition to being the first to use Bayesian neural networks for atmospheric retrieval, we also introduce a new loss function for Bayesian neural networks that learns correlations between the model outputs. Importantly, we show that designing machine learning models to explicitly incorporate domain-specific knowledge both improves performance and provides additional insight by inferring the covariance of the retrieved atmospheric parameters. We apply \texttt{plan-net} to the Hubble Space Telescope Wide Field Camera 3 transmission spectrum for WASP-12b and retrieve an isothermal temperature and water abundance consistent with the literature. We highlight that our method is flexible and can be expanded to higher-resolution spectra and a larger number of atmospheric parameters

    Astrobiology as a NASA Grand Challenge

    Get PDF
    "Are we alone" is a question whose ambition can only be met with a NASA-led global collaboration. In this white paper, we describe how this makes "The Search for Life Beyond Earth" a new Grand Challenge for NASA. As described in the White House Office of Science and Technology Policy and the White House National Economic Council, Grand Challenges are "ambitious but achievable goals that harness science, technology, and innovation to solve important national or global problems and that have the potential to capture the public's imagination." NASA had identified an "Asteroid Grand Challenge" centered on the Asteroid Retrieval Mission, which was closed out in June, 2017. Here, we explain how NASA's next Grand Challenge could be focused on "The Search for Life Beyond Earth," with a flagship-scale mission in Astrophysics as its centerpiece
    • …
    corecore