Different kinds of paper varying in basis weight, thickness, etc. and finishing characteristics such as cast, gloss, matte were analyzed with and without deposited ink. A 1.7 MHz Ultran non-contact ultrasound focused transducer was operated in the pulse-echo mode to investigate the samples following a raster scan on a 1.5 cm by 1.5 cm area. Both sides of each sample were imaged under this protocol. A pre-designed pattern consisting of some text and a rectangular solid block was printed on the front side of the samples using a Xerox Nuvera120 laser printer and the imaging protocol repeated. C-scan images created from the envelope detected data provide a promising means to investigate and visually differentiate the mechanical properties of the samples as ink is deposited, as well as to differentiate front and back sides of each sample. The second normalized intensity moment and Signal to Noise Ratio (SNR) of the signal envelope are investigated to test their validity to discriminate between different kinds of paper as well as differences in scattering properties when ink is deposited