162 research outputs found

    Synthesis of geopolymer emulsions

    Get PDF
    The understanding of emulsion geopolymer synthesis is a major issue for several industrial applications such as the formation of hierarchically porous material for filtration, lightweight materials for civil engineering or even the conditioning of radioactive mineral oil. Emulsion stability (irreversible coarsening, creaming…) are mainly controlled by the interfacial properties (surface tension and nature of the surfactant) and the viscosity ratio between the dispersed (hd) and the continuous phase (hc). The aim of this paper is thus to study model emulsions (composed of hexadecane (C16) as dispersed phase and metakaolin based geopolymer as continuous phase) with the highest volume fraction of C16 as possible. Surfactant was added to the mixture to stabilize the C16 droplets and geopolymer emulsion was synthesis under shear stirring. The influence of the viscosity of the geopolymer paste controlled by the water content was studied and results show that emulsions are unstable for a viscosity ratio hd/hc lower than 0.01. Up to 70% in volume of C16 was incorporated within the geopolymer and hierarchical porous network was thus obtained. Indeed after removal the C16 phase, the porous network was characterized and a specific surface area of 90 m²/g, a mean mesopore diameter of 19 nm, a macropore size distribution ranged between 10-200 µm (fig 1.) and a compression strength of around 0.5 MPa were obtained. Please click Additional Files below to see the full abstract

    RZ-DPSK Optical Modulation For free Space Optical Communication Satellites

    Get PDF
    We demonstrate up to 4 dB improvement in optical receiver sensitivity using Return-to-Zero Differential Phase Shift Keying (RZ-DPSK) modulation compared with Non-Return-to-Zero On Off Keying (NRZ-OOK) in free space optical communication from satellite to ground at 40 Gbit/s data rate. This has been assessed using simulation software. An experiment is taking place to validate this result for 10 Gbit/s

    Ontologies for increasing the FAIRness of plant research data

    Full text link
    The importance of improving the FAIRness (findability, accessibility, interoperability, reusability) of research data is undeniable, especially in the face of large, complex datasets currently being produced by omics technologies. Facilitating the integration of a dataset with other types of data increases the likelihood of reuse, and the potential of answering novel research questions. Ontologies are a useful tool for semantically tagging datasets as adding relevant metadata increases the understanding of how data was produced and increases its interoperability. Ontologies provide concepts for a particular domain as well as the relationships between concepts. By tagging data with ontology terms, data becomes both human and machine interpretable, allowing for increased reuse and interoperability. However, the task of identifying ontologies relevant to a particular research domain or technology is challenging, especially within the diverse realm of fundamental plant research. In this review, we outline the ontologies most relevant to the fundamental plant sciences and how they can be used to annotate data related to plant-specific experiments within metadata frameworks, such as Investigation-Study-Assay (ISA). We also outline repositories and platforms most useful for identifying applicable ontologies or finding ontology terms.Comment: 34 pages, 4 figures, 1 table, 1 supplementary tabl

    Recombination and large structural variations shape interspecific edible bananas genomes

    Get PDF
    Admixture and polyploidization are major recognized eukaryotic genome evolutionary processes. Their impacts on genome dynamics vary among systems and are still partially deciphered. Many banana cultivars are triploid (sometimes diploid) interspecific hybrids between Musa acuminata (A genome) and M. balbisiana (B genome). They have no or very low fertility, are vegetatively propagated and have been classified as 'AB', 'AAB' or 'ABB' based on morphological characters. We used NGS sequence data to characterize the A vs. B chromosome composition of nine diploid and triploid interspecific cultivars, to compare the chromosome structures of A and B genomes and analyze A/B chromosome segregations in a polyploid context. We showed that interspecific recombination occurred frequently between A and B chromosomes. We identified two large structural variations between A and B genomes, a reciprocal translocation and an inversion that locally affected recombination and led to segregation distortion and aneuploidy in a triploid progeny. Interspecific recombination and large structural variations explained the mosaic genomes observed in edible bananas. The unprecedented resolution in deciphering their genome structure allowed us to start revisiting the origins of banana cultivars and provided new information to gain insight into the impact of interspecificity on genome evolution. It will also facilitate much more effective assessment of breeding strategies

    Guidelines for creating crop-specific ontologies to annotate phenotypic data: version 2.1

    Get PDF
    The Crop Ontology Guidelines version 2.1 provide detailed information and numerous examples for the use of the Trait Dictionary Template v.5.2 to develop a high quality Trait Dictionary with trait and variables used for the annotation of crop phenotypic data. The guidelines were developed in collaboration with the Integrated Breeding Platform and CIMMYT in the context of the CGIAR Big Data Platform
    • …
    corecore